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Fermi Liquids

Basic question: What is the effective field theory for a system with a
Fermi surface (FS)?

Lore: must be Landau Fermi liquid [Landau, 50s].

kF

ε
F

Recall [8.044, 8.06]:

if we had free fermions, we would fill single-particle

energy levels ε(k) until we ran out of fermions: →
Low-energy excitations:

remove or add electrons near the Fermi surface εF , kF .

Idea [Landau]: The low-energy excitations of the
interacting theory are still weakly-interacting fermionic, charged
‘quasiparticles’.
Elementary excitations are free fermions with some dressing:

in medium−→
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The standard description of metals

The metallic states that we understand well are described by
Landau’s Fermi liquid theory.
Landau quasiparticles → poles in single-fermion Green function GR

at k⊥ ≡ |~k| − kF = 0, ω = ω?(k⊥) ∼ 0: GR ∼
Z

ω − vFk⊥ + iΓ

Measurable by ARPES (angle-resolved photoemission):
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Intensity ∝
spectral density :

A(ω, k) ≡ ImGR(ω, k)
k⊥→0→ Zδ(ω − vFk⊥)

Landau quasiparticles are long-lived: width is Γ ∼ ω2
?,

residue Z (overlap with external e−) is finite on Fermi surface.
Reliable calculation of thermodynamics and transport relies on this.
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Ubiquity of Landau Fermi liquid

Physical origin of lore:
1. Landau FL successfully describes 3He,
metals studied before ∼ 1980s, ...

2. RG: Landau FL is stable under almost all perturbations.

[Shankar, Polchinski, Benfatto-Gallivotti 92]

UV

H(free fermion) r

IR

superfluid



Non-Fermi liquids exist but are mysterious

e.g.: ‘normal’ phase of optimally-doped cuprates: (‘strange metal’)

k

ω ω

k

ω k

−e

k−=

ω

out

out
in

= ω

k

in

in

in

−

=⇒

among other anomalies: ARPES shows gapless modes at finite k (FS!)

with width Γ(ω?) ∼ ω?, vanishing residue Z
k⊥→0→ 0.

Working defintion of NFL:

Still a sharp Fermi surface
but no long-lived quasiparticles.

T

Most prominent
mystery of the strange metal phase:
e-e scattering: ρ ∼ T 2, e-phonon: ρ ∼ T 5, ...

no known robust effective theory: ρ ∼ T .
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Non-Fermi Liquid from non-Holography
• Luttinger liquid in 1+1 dimensions. X
• loophole in RG argument:
couple a Landau FL perturbatively to a bosonic mode
(e.g.: magnetic photon, slave-boson gauge field, statistical gauge field,

ferromagnetism, SDW, Pomeranchuk order parameter...)

k k − q

q

k

→ nonanalytic behavior in
GR(ω) ∼ 1

vF k⊥+cω2ν at FS:
NFL.

Not strange enough:
These NFLs are not strange metals
in terms of transport.
FL killed by gapless bosons:

small-angle scattering dominates
=⇒ ‘transport lifetime’ 6= ‘single-particle lifetime’

boson dispersion

i.e. in models with Γ(ω?) ∼ ω?, ρ ∼ Tα>1.
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Can string theory be useful here?

It would be valuable to have a non-perturbative description of such
a state in more than one dimension.

Gravity dual?

We’re not going to look for a gravity
dual of the whole material.

[an un-doped Cu-O plane, from the New Yorker]

Rather: lessons for universal physics of “non-Fermi liquid”.



Lightning review of holographic
duality



Holographic duality (AdS/CFT)
[Maldacena; Witten; Gubser-Klebanov-Polyakov]

gravity in AdSd+1 = d-dimensional Conformal Field Theory
(many generalizations, CFT is best-understood.)

AdS : ds2 =
r2

R2

(
−dt2 + d~x2

)
+ R2 dr

2

r2

isometries of AdSd+1 ! conformal symmetry

IR UV
u

R

d+1

d−1,1

Minkowski

UV

IR r

AdS

...

BOUNDARY

The extra (‘radial’) dimension is the resolution scale.
(The bulk picture is a hologram.)



when is it useful?

ZQFT [sources] = Zquantum gravity[boundary conditions at r →∞]

≈ e−N
2Sbulk[boundary conditions at r→∞]|extremum of Sbulk

classical gravity (sharp saddle) ! many degrees of freedom per
point, N2 � 1

fields in AdSd+1 ! operators in CFT
mass ! scaling dimension

boundary conditions on bulk fields ! couplings in field theory

e.g.: boundary value of bulk metric limr→∞ gµν

= source for stress-energy tensor Tµν

different couplings in bulk action ! different field theories

large AdS radius R ! strong coupling of QFT



confidence-building measures

I 1. Many detailed checks in special examples
examples: relativistic gauge theories (fields are N × N matrices), with

extra symmetries (conformal invariance, supersymmetry)

checks: ‘BPS quantities,’ integrable techniques, some numerics

I 2. sensible answers for physics questions
rediscoveries of known physical phenomena: e.g. color confinement, chiral

symmetry breaking, thermo, hydro, thermal screening, entanglement

entropy, chiral anomalies, superconductivity, ...
Gravity limit, when valid, says who are the correct variables.
Answers questions about thermodynamics, transport, RG flow, ...

in terms of geometric objects.

I 3. applications to quark-gluon plasma (QGP)
benchmark for viscosity, hard probes of medium, approach to equilibrium



A goal for holography

Can we formulate a tractable effective description of the
low-energy physics of a system
with a Fermi surface?,
but without long-lived quasiparticles?

? Multiple possible definitions:
1. In terms of single-particle response:
Fermi surface ≡ {k | G−1(k, ω) = 0 at ω = 0}
(Here G = 〈c†c〉 is a correlator of a gauge-invariant fermion operator, like an

electron, effectively.)

2. In terms of transport: e.g. ρ(T ) ∼ Tα<2.



Minimal ingredients for a holographic Fermi surface

Consider any relativistic CFT with a gravity dual → gµν
a conserved U(1) symmetry proxy for fermion number → Aµ
and a charged fermion proxy for bare electrons → ψ.
∃ many examples. Any d > 1 + 1, focus on d = 2 + 1.

r
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UV

horizon

r=r

+
+
+
+
+

++++

black hole
charged

Holographic CFT at finite density?:
charged black hole (BH) in AdS .

To find FS: look for sharp
features in fermion Green functions GR

at finite momentum and small
frequency. [S-S Lee]

To compute GR : solve Dirac equation in charged BH geometry.
‘Bulk universality’: for two-point functions, the interaction terms don’t matter.

Results only depend on q,m.

?: If we ignore the back-reaction of other fields. More soon.
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Fermi surface!

The system is rotation invariant, GR depends on k = |~k|.
At T = 0, we find numerically [H. Liu-JM-D. Vegh] :

For q = 1,m = 0 : kF ≈ 0.92

But it’s not a Fermi liquid:

The peak has a nonlinear
dispersion relation ω ∼ kz⊥ with

z = 2.09 for q = 1,∆ = 3/2

z = 5.32 for q = 0.6,∆ = 3/2.

and the residue vanishes.

Note: all frequencies measured from chemical potential. FS at ω = 0.



Emergent quantum criticality
Whence these exponents?

with Ld+1 = R+
d(d − 1)

R2
− 2κ2

g2
F

F 2 + ψ̄i ( /D −m)ψ

the near-horizon geometry of black hole is AdS2 × Rd−1.
The conformal invariance of this metric is emergent.
(We broke the microscopic conformal invariance with finite density.)

t → λt, x → λ1/zx with z →∞.

boundary

d+1
AdS

d−1

xRAdS
2

horizon

r−1<<1 r>>1
ω � µ ω � µ

AdS/CFT =⇒ the low-energy physics governed by dual IR CFT.
The bulk geometry is a picture of the RG flow from the CFTd to this NRCFT.

Idea for analytic understanding of FS behavior:
solve Dirac equation by matched asymptotic expansions.
In the QFT, this is RG matching between UV and IR CFTs.



Analytic understanding of Fermi surface behavior

GR(ω, k) = K
b

(0)
+ + ωb

(1)
+ + O(ω2) + Gk(ω)

(
b

(0)
− + ωb

(1)
− + O(ω2)

)
a

(0)
+ + ωa

(1)
+ + O(ω2) + Gk(ω)

(
a

(0)
− + ωa

(1)
− + O(ω2)

)
The location of the Fermi surface is determined by short-distance
physics (analogous to band structure –

a, b ∈ R from normalizable sol’n of ω = 0 Dirac equation in full BH)

but the low-frequency scaling behavior near the FS is universal
(determined by near-horizon region – IR CFT G).

In hindsight: “semi-holographic” interpretation [FLMV, Polchinski-Faulkner]

quasiparticle decays by interacting with z =∞ IR CFT d.o.f.s

G = c(k)ω2ν : IR CFT correlator.
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Death of the quasiparticles
Rewrite spinor equation as
Schrödinger equation (with E = 0)(
−∂2

s + V (r(s))
)

Ψ(z(s)) = 0.

Spinor boundstate at ω = 0 tunnels
into AdS2 region with rate

Γ ∝ e−2
∫
ds
√

V (s) ∼ e2ν lnω = ω2ν

(WKB approx good at small ω)
FT interpretation: quasiparticle decays by interacting with IR CFT.

ν < 1
2 ν = 1

2 ν > 1
2



ν = 1
2 : Marginal Fermi liquid

GR ≈
h1

k⊥ + c̃1ω lnω + c1ω
, c̃1 ∈ R, c1 ∈C

Γ(k)

ω?(k)

k⊥→0→ const, Z ∼ 1

| lnω?|
k⊥→0→ 0.

A well-named phenomenological model of strange metal regime [Varma et al, 1989].



Charge transport by holographic Fermi surfaces

T

Most prominent mystery →
of strange metal phase: ρDC ∼ T

We can compute the contribution

to the conductivity from the Fermi surface

[Faulkner-Iqbal-Liu-JM-Vegh, 1003.1728 and to appear (???)]:

ρFS ∼ T 2ν

Dissipation of current is controlled by

the decay of the fermions into the AdS2 DoFs.

=⇒ single-particle lifetime controls transport.

z = 1

↓

z � 1

marginal Fermi liquid: ν = 1
2 =⇒ ρFS ∼ T .

[Important disclaimer: this is NOT the leading contribution to σDC!]
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Frameworks for non-Fermi liquid
• a Fermi surface coupled to a critical boson field
[Recent work: S-S Lee, Metlitski-Sachdev, Mross-JM-Liu-Senthil, 1003.0894]

L = ψ̄ (ω − vFk⊥)ψ + ψ̄ψa + L(a)

small-angle scattering dominates =⇒ transport is not that of strange metal.

• a Fermi surface mixing with a bath of critical fermionic
fluctuations with large dynamical exponent
[FLMV 0907.2694, Faulkner-Polchinski 1001.5049, FLMV+Iqbal 1003.1728]

L = ψ̄ (ω − vFk⊥)ψ + ψ̄χ+ ψχ̄+ χ̄G−1χ

χ: IR CFT operator

�=� +

�
+

�
+. . .

〈ψ̄ψ〉 =
1

ω − vFk⊥ − G
G = 〈χ̄χ〉 = c(k)ω2ν

ν ≤ 1
2 : ψ̄χ coupling is a relevant perturbation.



Drawbacks of this construction

1. The Fermi surface degrees of freedom are a small part (o(N0))

of a large system (o(N2)). (More on this in a moment.)

2. Too much universality! If this charged black hole is inevitable,
how do we see the myriad possible dual states of matter (e.g.
superconductivity...)?

3. The charged black hole we are studying
violates the 3rd Law of Thermodynamics (Nernst’s version):
S(T = 0) 6= 0 – it has a groundstate degeneracy.

This is a manifestation of the black hole information paradox:

classical black holes seem to eat quantum information.

Problems 2 and 3 solve each other: degeneracy =⇒ instability.
The charged black hole describes an intermediate-temperature phase.
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Stability of the groundstate
Often, ∃ charged bosons.
At small T , the dual scalar can condense
spontaneously breaking the U(1) symmetry;

BH acquires hair [Gubser, Hartnoll-Herzog-Horowitz].

+
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Boundary 

Why: black hole spontaneously
emits charged particles [Starobinsky, Unruh, Hawking].
AdS is like a box: they can’t escape.

Fermi: negative energy states get filled.
Bose: the created particles then cause
stimulated emission (superradiance).
A holographic superconductor is a black hole laser.

Photoemission ‘exp’ts’ on
holographic superconductors:
[Faulkner-Horowitz-JM-Roberts-Vegh]

In SC state: a sharp peak
forms in A(k , ω).
The condensate lifts the IR CFT

modes into which they decay.
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Superconductivity is a distraction

Look ‘behind’ superconducting dome by turning on magnetic field:

Strange metal persists to T ∼ 0!
So we want to look for a theory of this intermediate-scale physics

(like Fermi liquid theory).



The problem we really want to solve

Ld+1 = R+ Λ− 1

g2
FµνF

µν + κψ̄i ( /D −m)ψ

↑

(with AdS boundary conditions, with a chemical potential.)
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Electron stars

[Hartnoll and collaborators, 2010-2011]

Choose q,m to reach a regime where
the bulk fermions can be treated as a

(gravitating) fluid
(Oppenheimer-Volkov aka Thomas-Fermi

approximation).

−→ “electron star”

But:
• Because of parameters (large mass) required for fluid approx,
the dual Green’s function exhibits many Fermi surfaces.
[Hartnoll-Hofman-Vegh, Iqbal-Liu-Mezei 2011]

• Large mass =⇒ lots of backreaction =⇒ kills IR CFT
=⇒ stable quasiparticles at each FS.
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A (warmup) quantum electron star

Ld+1 = R+Λ− 1

g2
F 2 + κψ̄i ( /D −m)ψ

A solution of QED in AdS [A. Allais, JM, S. J. Suh].
In retrospect, the dual system describes

r
r

r

a Fermi Surface coupled to relativistic CFT.

• FS quasiparticles survive this:
FS at {ω = 0, |~k| = kF 6= 0}
is outside IR lightcone {|ω| ≥ |~k|}.
Interaction is kinematically forbidden.
[Landau: minimum damping velocity in superfluid;

Gubser-Yarom; Faulkner-Horowitz-JM-Roberts-Vegh]
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• When we include gravitational backreaction [in progress with Andrea Allais]

(dual to effects of FS on gauge theory dynamics)

the IR geometry will be different from AdS.

Optimism: A quantum electron star is a happy medium between
AdS2 (no fermions) and classical electron star (heavy fermions).
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Towards a quantum electron star

ψ
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k
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[Sachdev, 2011]: A model of a Fermi liquid.

Like AdS/QCD: a toy model of the
groundstate of a confining gauge
theory from a hard cutoff in AdS.

Add chemical potential.

Compute spectrum of Dirac field,
solve for backreaction on Aµ.
Repeat as necessary.

The system in the bulk is a Fermi liquid

(in a box determined by the gauge

dynamics).
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Towards a fermion-driven deconfinement transition

Lots of low-E charged dofs
screen gauge interactions.

�
Effect of fermions on the
gauge dynamics =
gravitational backreaction.

A real holographic model of
confinement: AdS soliton

so far: →

η

ψ

What’s the endpoint of this transition?
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A quantum electron star

Numerics explode before transition. Essential problem: what can the state of

the bulk fermions be if the geometry has as horizon?

Probe limit: GN → 0 [like HHH 0803]

FT Interpretation: most CFT dofs are neutral. (c ∼ L2

GN
(∝ 〈TT 〉)� k ∝ 〈jj〉)

/DΦψ = 0

Φ′′ = −q2ρ

(
Φ(z) + k ∂

∂z −
m
z

− ∂
∂z −

m
z Φ(z)− k

)
χn = ωnχn

ψ =: (−gg zz)−
1
4 e−iωt+ikix

i
χ

Normalizable BCs at z = 0,
hard-wall BC at z = zm

Φ′′(z) = −q2 (ρ(z)− ρ(z)|Φ=0) ,

ρ(z) ≡
∑

n,ωn<0

ψ2
n(z)
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The padded room

Compute charge density:

〈n(r)〉 = 〈ψ†(r)ψ(r)〉 =
∑
k

nk(r) ∼
∫

d2k
1

k2
Φ′′(r)

Cutoffs everywhere: UV cutoff on AdS radial coordinate, bulk UV cutoff

(lattice), UV cutoff on k integral, IR cutoff on AdS radial coordinate: zm.

Charge renormalization.
Define charge susceptibility by linear

response:

χ ≡
∑
k

χ(k), χ(k) =
∆ρk(z?)

Φ′′(z?)

q2
R = q2

0

1

1− q2
0χ

�



Physics checks:

1) Surface charge. Our bulk
charges are not mobile in the
AdS radial direction. (Like metal

of finite extent along one axis.)

An electric field applied to an

insulator polarizes it.

This results in a surface charge
σb = n̂ · ~P.

2) Chiral anomaly.
Each k mode is a 1+1 fermion field

Sk =
∫
drdt iψ̄k

(
/D + m + iγ5k

)
ψk

?
=⇒ ∂rnk → 0 when m, k → 0.

Not so in numerics:

∂µj
µ
5 =

1

2π
εµνF

µν = − 1

π
Φ′ X



A quantum electron star
The limit zm →∞ exists! :
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fermions against falling into
the AdS gravitational well.
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Semi-holographic interpretation

The dual system can be regarded as

a Fermi Surface coupled to relativistic CFT (with gravity dual)

Φ(r) : how much of the chemical potential is seen by the dofs of
wavelength ∼ r .
Convergence of EOM requires Φ(∞) = 0, complete screening in far IR.

Φ(∞) = 0 means FS survives this
coupling to CFT:
FS at {ω = 0, |~k | = kF 6= 0} is
outside IR lightcone {|ω| ≥ |~k|}.
Interaction is kinematically forbidden.

[Landau: minimum damping velocity in SF; Gubser-Yarom;

Faulkner et al 0911]

In probe limit, quasiparticles survive.

With “Landau damping,” IR speed of light

smaller, maybe not.
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Future quantum electron stars

• When we include gravitational
backreaction
(dual to effects of FS on gauge theory dynamics)

the IR geometry can be different from AdS.
Optimism: happy medium between AdS2

(no fermions) and classical electron star
(heavy fermions).

Q: What happens?
What other Fermi surface states can arise
holographically?

A: We’ll see!

0 mL
Μz0

Μ3

nHzL

m = 0.100

0 mL
Μz0

Μ3

nHzL

m = 0.500

0 mL
Μz0

Μ3

nHzL

m = 1.000
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Μz0

Μ3

nHzL

m = 2.000

0 mL
Μz0

Μ3

nHzL

m = 4.000

0 mL
Μz0

Μ3

nHzL

m = 8.000

• An alternative to killing the quasiparticles by coupling to gapless stuff:

Split them apart! Fractionalization of charge-carriers is
built into holographic construction: Ψe = tr λX ....
(Does not create particles at short distances.

It’s a surprise that it does in these states. Perhaps not in others?)



One example of the difficulties involved
Consider a massless Dirac fermion in 1+1 dimensions.

ds2 = −ft(z)dt2 + fz(z)dz2

For convenience take z ' z + 2π and fz = 1 gauge.
Conformal anomaly:

Tµ
µ =

1

4π
R(z) =

1

4π

(
1

2

(
f ′2t
ft

)2

− f ′′t
ft

)

H =

 −m
√
ft −

(
ft
fz

)1/4

∂z
(

ft
fz

)1/4(
ft
fz

)1/4

∂z
(

ft
fz

)1/4

m
√
ft

 .

Latticeize, add up:

Tµ
µ =

∑
a ∈ spectrum of H

θ(ωa)ψ†a (...)ψa =
1

4π

(
3

4

(
f ′2t
ft

)2

− f ′′t
ft

)

Not a scalar!
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One example of the difficulties involved, cont’d
Why?

e.g.: ft = 1 + .3 cos z + .2 cos 2z ,

n = 249 sites.

IPRk ≡
∫
dz |ψ|2k



The end.

Thanks for listening.





Physics of quantum electron star

UV lightcone for charge-q dofs:
{(ω, k)|(ω + qµ)2 ≤ c2k2}

IR lightcone for charge-q dofs:
{(ω, k)|(ω + qΦ(∞))2 ≤ c2k2}
FS boundstate can scatter off these
dofs (recall tunneling into AdS2).
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Q: What’s Φ(∞)?
A: Φ(∞) = 0. If Φ(∞) 6= 0: occupation of continuum.

ψIR LC(z)
z→∞→ e iκz =⇒ ρ(z)

z→∞→ const

=⇒ Φ(z)
z→∞∼ z2 6= Φ(∞)

Q: Whence power-law?
A: The modes which skim the IR
lightcone. Matching calculation?
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