Gravity duals of Galilean-invariant quantum critical points

with:
K. Balasubramanian
A. Adams

0804.4053, 0807.1111
also: Son 0804.3972, Rangamani et al 0807.1099, Maldacena et al 0807.1100
work in progress with K. Balasubramanian and with C. McEntee, D. Nickel

Grandiose but brief introduction

Some relativistic CFTs have an effective description at strong coupling in terms of gravity (more generally strings) in AdS space.

Grandiose but brief introduction

Some relativistic CFTs have an effective description at strong coupling in terms of gravity (more generally strings) in AdS space.

It would be great if we had a gravity dual for a system which can be created in a laboratory.
(solutions of strong-coupling problems, quantum gravity experiments)

Grandiose but brief introduction

Some relativistic CFTs have an effective description at strong coupling in terms of gravity (more generally strings) in AdS space.

It would be great if we had a gravity dual for a system which can be created in a laboratory. (solutions of strong-coupling problems, quantum gravity experiments)

Some laboratory systems have critical points described by relativistic CFTs.

- QCD a little above T_{c} acts like a CFT
- some quantum-critical condensed matter systems have emergent lightcones

More precisely

- It would be great if we had a gravity dual for a real system

More precisely

- It would be great if we had a gravity dual for a real system which lives longer than a fermi/c,

More precisely

- It would be great if we had a gravity dual for a real system which lives longer than a fermi/c, and which can be created in a laboratory more convenient than RHIC.

More precisely

- It would be great if we had a gravity dual for a real system which lives longer than a fermi/c, and which can be created in a laboratory more convenient than RHIC.
- Piles of atoms have a rest frame.
(even if present, lightcone need not be shared by different degrees of freedom.)

More precisely

- It would be great if we had a gravity dual for a real system which lives longer than a fermi/c, and which can be created in a laboratory more convenient than RHIC.
- Piles of atoms have a rest frame.
(even if present, lightcone need not be shared by different degrees of freedom.)

So, in searching for experiments with which string theory has some interface, it's worth noting that:

> non-relativistic CFTs exist.

Goal for today:

Method of the missing box
AdS : relativistic CFT

Goal for today:

Method of the missing box
AdS : relativistic CFT
\square : galilean-invariant CFT

Goal for today:

Method of the missing box
AdS : relativistic CFT
\square : galilean-invariant CFT
Secondary motivating question: which kinds of systems can have gravity duals.

Goal for today:

Method of the missing box
AdS : relativistic CFT
\square : galilean-invariant CFT
Secondary motivating question: which kinds of systems can have gravity duals.

Focus on scale-invariant case (sometimes CFT): partly for guidance, partly because it's the most interesting.

Goal for today:

Method of the missing box
AdS : relativistic CFT
\square : galilean-invariant CFT
Secondary motivating question: which kinds of systems can have gravity duals.

Focus on scale-invariant case (sometimes CFT): partly for guidance, partly because it's the most interesting.

Note restriction to Gal.-invariance $\quad \partial_{t} \psi=\vec{\nabla}^{2} \psi$ distinct from: Lifshitz-like fixed points $\quad \partial_{t}^{2} \psi=\left(\vec{\nabla}^{2}\right)^{2} \psi$ are not relativistic, but have antiparticles.
gravity duals of those: S. Kachru, X. Liu, M. Mulligan, 0808.1725

Disclaimer:

Despite the title of our paper from July, lithium atoms probably don't have a weakly coupled classical gravity dual.

Disclaimer:

Despite the title of our paper from July, lithium atoms probably don't have a weakly coupled classical gravity dual.
their cousins do.
hope: useful in the same way as $A d S$ for strongly coupled relativistic liquids, such as those made from QCD (i.e. QGP)
If we're not going to get it exactly right, we can at least match the symmetries.

Disclaimer:

Despite the title of our paper from July, lithium atoms probably don't have a weakly coupled classical gravity dual.
their cousins do.
hope: useful in the same way as AdS for strongly coupled relativistic liquids, such as those made from QCD (i.e. QGP)
If we're not going to get it exactly right, we can at least match the symmetries.
different hydro: conserved particle number.
\exists proposed QFT counterexamples to η / s-bound conjecture which are nonrelativistic.
cold atoms at unitarity come closer than anything but QGP.

table of contents

1. motivation (already over)
2. symmetry algebra and QFT realizations
3. geometrize and find sources
4. holographic correspondence
5. embedding in string theory
6. finite temperature and finite density
7. ideas for future

Galilean scale invariance

$i, j=1 \ldots d$ spatial dims

Galilean symmetry:

translations P_{i}, rotations $M_{i j}$, time translations H, Galilean boosts K_{i}, \quad number or mass operator N :
$\left[K_{i}, P_{j}\right]=\delta_{i j} N$ (we're using 'non-relativistic natural units' where $\hbar=M=1$)

Galilean scale invariance

$i, j=1 \ldots d$ spatial dims

Galilean symmetry:

translations P_{i}, rotations $M_{i j}$, time translations H,
Galilean boosts K_{i}, number or mass operator N :
$\left[K_{i}, P_{j}\right]=\delta_{i j} N$ (we're using 'non-relativistic natural units' where $\hbar=M=1$)
dilatations $D: \quad[D, P]=-i P(D$ measures length dimensions)

$$
[D, H]=-i z H\left(z \equiv \text { dynamical exponent: } x \rightarrow \lambda x, \quad t \rightarrow \lambda^{z} t\right)
$$

closure of algebra \longrightarrow

$$
[D, K]=i(z-1) K,
$$

$[D, N]=i(z-2) N$.

Galilean scale invariance

$i, j=1 \ldots d$ spatial dims

Galilean symmetry:

translations P_{i}, rotations $M_{i j}$, time translations H,
Galilean boosts K_{i}, number or mass operator N :
$\left[K_{i}, P_{j}\right]=\delta_{i j} N$ (we're using 'non-relativistic natural units' where
$\hbar=M=1$)
dilatations $D: \quad[D, P]=-i P$ (D measures length dimensions)

$$
[D, H]=-i z H\left(z \equiv \text { dynamical exponent: } x \rightarrow \lambda x, \quad t \rightarrow \lambda^{z} t\right)
$$

closure of algebra $\rightarrow \quad[D, K]=i(z-1) K, \quad[D, N]=i(z-2) N$.

Schrödinger symmetry:

In the special case $z=2$, there is an additional conformal generator, $C=I T I$

$$
\left[M_{i j}, C\right]=0, \quad\left[K_{i}, C\right]=0, \quad[D, C]=-2 i C, \quad[H, C]=-i D
$$

comments

- there's only one special conformal symmetry, not $d+1$ like in relativistic case. the systems we discuss will also have a discrete symmetry $\mathcal{C T}:\left\{\begin{aligned} H & \rightarrow-H \\ \Psi & \rightarrow \Psi^{\dagger} \\ \hat{N} & \rightarrow-\hat{N}\end{aligned}\right.$
- [Nishida-Son] irreps of Schrod $(z=2)$ labelled by $\Delta_{0}, N_{0} \equiv \ell$.
- [Tachikawa] unitarity bound: $\Delta \geq \frac{d}{2}$ (independent of spin.)

QFT realization

free fermions (or free bosons) $S_{0}=\int d t d^{d} x\left(\psi^{\dagger} i \partial_{t} \psi+\vec{\nabla} \psi^{\dagger} \cdot \vec{\nabla} \psi\right)$

$$
\begin{gathered}
n(\vec{x}) \equiv \psi^{\dagger} \psi, \quad \vec{j}(\vec{x}) \equiv-\frac{i}{2}\left(\psi^{\dagger} \vec{\nabla} \psi-\vec{\nabla} \psi^{\dagger} \psi\right) \\
N=\int d^{d} \times n(\vec{x}), \quad P_{i}=\int j_{i}(\vec{x}), M_{i j}=\int\left(x_{i j} j_{j}(\vec{x})-x_{j} j_{i}(\vec{x})\right) \\
K_{i}=\int x_{i} n(\vec{x}), \quad D=\int x_{i} j_{i}(\vec{x}), \quad C=\int \frac{x^{2} n(\vec{x})}{2}
\end{gathered}
$$

satisfy all the commutation relations not involving the Hamiltonian. With $H_{0}=\int d \vec{x} \frac{1}{2} \nabla_{i} \psi^{\dagger} \nabla_{i} \psi, \psi$ saturates unitarity bound.

towards interacting NRCFT

Consider the following Hamiltonian:

$$
H=\int d \vec{x} \frac{1}{2} \nabla_{i} \psi^{\dagger} \nabla_{i} \psi+\frac{1}{2} \int d \vec{x} d \vec{y} \psi^{\dagger}(\vec{x}) \psi^{\dagger}(\vec{y}) \quad V(\underbrace{|\vec{x}-\vec{y}|}) \psi(\vec{y}) \psi(\vec{x})
$$

towards interacting NRCFT

Consider the following Hamiltonian:

$$
H=\int d \vec{x} \frac{1}{2} \nabla_{i} \psi^{\dagger} \nabla_{i} \psi+\frac{1}{2} \int d \vec{x} d \vec{y} \psi^{\dagger}(\vec{x}) \psi^{\dagger}(\vec{y}) \quad V(\underbrace{|\vec{x}-\vec{y}|}_{\equiv r}) \psi(\vec{y}) \psi(\vec{x})
$$

Choose a short-range two-body potential $V(r)$,

towards interacting NRCFT

Consider the following Hamiltonian:

$$
H=\int d \vec{x} \frac{1}{2} \nabla_{i} \psi^{\dagger} \nabla_{i} \psi+\frac{1}{2} \int d \vec{x} d \vec{y} \psi^{\dagger}(\vec{x}) \psi^{\dagger}(\vec{y}) \quad V(\underbrace{|\vec{x}-\vec{y}|}_{\equiv r}) \psi(\vec{y}) \psi(\vec{x})
$$

Choose a short-range two-body potential $V(r)$, e.g.:

a) $V_{0}<1 / m r_{0}^{2}$: No bound state
b) $V_{0}=1 / m r_{0}^{2}$: Bound state with zero energy
c) $V_{0}>1 / m r_{0}^{2}$: At least one bound state with non-zero energy.

unitarity limit

scattering length $|a| \sim$ size of bound-state wavefunction. case b corresponds to infinite scattering length.
When atoms collide, they spend a long time considering whether or not to bind. σ saturates bound on scattering cross section from (s-wave) unitarity (i.e. this is the strongest possible coupling).

For physics at wavelengths $\gg r_{0}$, there is no scale in the problem. dilatations: $a \rightarrow \lambda a, r_{0} \rightarrow \lambda r_{0} . \quad a=\infty, r_{0}=0$ is a fixed point.
In this limit, the details of the potential are irrelevant, can choose $V=\delta^{d}(r)$:

$$
\mathcal{L} \sim \bar{\psi}_{\alpha} i \partial_{t} \psi^{\alpha}-\bar{\psi}_{\alpha} \frac{\vec{\nabla}^{2}}{2 M} \psi^{\alpha}+g \bar{\psi}_{\uparrow} \psi_{\uparrow} \bar{\psi}_{\downarrow} \psi_{\downarrow}
$$

g has a fixed point where $a \gg$ interparticle dist $\gg r_{0}$ Zeeman effect \Longrightarrow scattering length can be controlled using an external magnetic field). $a=\infty$ is a crossover point between
$B C S$ and BEC groundstates.

some examples of systems realizing this symmetry

a) fermions at unitarity, $2<d<4$. (bosons suffer from 'Efimov effect')
b) 2d anyon gas [Jackiw-Pi]
c) DLCQ of relativistic CFT:

$$
2 p_{+} p_{-}-\vec{p}^{2}=0 \Longrightarrow E=\frac{\vec{p}^{2}}{2 M} \quad\left(E \equiv p_{+}, M \equiv p_{-}\right)
$$

schrödinger $_{d}=$ subgroup of $S O(d+1,2)$ preserving a lightlike direction.
d) something else (see below)

geometric realization

A metric whose isometry group is the schrödinger group:

$$
L^{-2} d s_{\operatorname{Schr}_{d}^{2}}^{2}=\frac{2 d \xi d t+\overrightarrow{d x}^{2}+d r^{2}}{r^{2}}-2 \beta^{2} \frac{d t^{2}}{r^{2 z}}
$$

'schrödinger space'

geometric realization

A metric whose isometry group is the schrödinger group:

$$
L^{-2} d s_{\operatorname{Schr}_{d}^{2}}^{2}=\frac{2 d \xi d t+\overrightarrow{d x}^{2}+d r^{2}}{r^{2}}-2 \beta^{2} \frac{d t^{2}}{r^{2 z}}
$$

'schrödinger space'
Compare to Poincaré AdS in light-cone coordinates:

$$
\begin{aligned}
d s_{A d S_{d+3}}^{2} & =\frac{-d \tau^{2}+d y^{2}+\overrightarrow{d x}^{2}+d r^{2}}{r^{2}} \\
& =\frac{2 d \xi d t+d \overrightarrow{d x}^{2}+d r^{2}}{r^{2}}
\end{aligned}
$$

without the β^{2} term, ∂_{t} is lightlike.

action of isometries

Galilean symmetry:

Translation in space: $\quad x^{i} \mapsto x^{i}+a^{i}$,
Translation in time: $\quad t \mapsto t+b$
Galilean boosts act linearly:

$$
\left(\begin{array}{c}
t \\
\vec{x} \\
\xi
\end{array}\right) \mapsto\left(\begin{array}{c}
t \\
\vec{x}-\vec{v} t \\
\xi+\vec{v} \cdot \vec{x}-\frac{v^{2}}{2} t
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-\vec{v} & \mathbb{1} & 0 \\
-\frac{v^{2}}{2} & -\vec{v} & 1
\end{array}\right)\left(\begin{array}{c}
t \\
\vec{x} \\
\xi
\end{array}\right) \equiv B_{v}\left(\begin{array}{c}
t \\
\vec{x} \\
\xi
\end{array}\right)
$$

like $\left(\begin{array}{c}1 \\ \vec{u} \\ \frac{u^{2}}{2}\end{array}\right) \mapsto B_{v}\left(\begin{array}{c}1 \\ \vec{u} \\ \frac{u^{2}}{2}\end{array}\right) \quad\left(\begin{array}{c}\rho \\ \vec{p} \\ \mathcal{E}\end{array}\right)=\rho\left(\begin{array}{c}1 \\ \vec{u} \\ \frac{u^{2}}{2}\end{array}\right)$

Dilatations: $(t, \vec{x}, \xi, r) \mapsto\left(\lambda^{z} t, \lambda \vec{x}, \lambda^{2-z} \xi, \lambda r\right)$
$z=2$ only: Special Conformal Transformation:

$$
x^{i} \rightarrow \frac{x^{i}}{1+c t}, t \rightarrow \frac{t}{1+c t}, \xi \rightarrow \xi+\frac{c}{2} \frac{\left(\vec{x} \cdot \vec{x}+r^{2}\right)}{(1+c t)}, r \rightarrow \frac{r}{1+c t}
$$

$N=-i \partial_{\xi}$ corresponds to number operator (rest mass).
For N to have a discrete spectrum, $\xi \sim \xi+L_{\xi}$.
$[\hat{N}, \log \Psi]=i \hbar$ says ξ is the phase of the wavefunction.

comments

1. not possible to realize on a smooth space $d+2$ dimensions. for $D>d+3$ this is not the only possibility.
2. $\operatorname{Sch}_{d}^{z=1}=A d S_{d+3}=\lim _{\beta \rightarrow 0} \operatorname{Sch}_{d}^{z}$ [Golderger, Barbon-Fuertes] compactness of ξ breaks $S O(4,2) \longrightarrow$ schröd
3. if $\xi \in \mathbb{R}$, we can scale away $2 \beta^{2}$ by (remnant of boost) $\left\{\begin{array}{c}t \mapsto \frac{t}{\sqrt{2} \beta} \\ \xi \mapsto \sqrt{2} \beta \xi\end{array}\right.$ but discrete spectrum requires compact $\xi \simeq \xi+L_{\xi}$ $\frac{\beta}{L_{\xi}}$ is an invariant parameter.
4. dual to vacuum of a gal. inv't field theory (no antiparticles!). the ξ-circle is null. (light winding modes?)
(this is the phase of the wavefunction of a state with no particles!) at finite temperature or density, not so.
5. all curvature scalars are constant.
6. however, \exists large tidal forces for $z \neq 2$, absent for finite T, μ.
7. this spacetime is conformal to a pp-wave. conformal boundary is one-dimensional. nevertheless, we will compute correlators of a CFT with d spatial dims.

What holds it up?

$$
R_{\mu \nu}-\frac{1}{2} g_{\mu \nu} R=-\Lambda g_{\mu \nu}-\delta_{\mu}^{t} \delta_{\nu}^{t} g_{t t} \mathcal{E}
$$

$\Lambda=-\frac{(d+1)(d+2)}{2 L^{2}}: C C \quad \mathcal{E}:$ a constant energy density ('dust') A realization of the dust: metric is sourced by e.g. the ground state of an Abelian Higgs model in its broken phase.

$$
S=\int d^{d+3} \times \sqrt{g}\left(-\frac{1}{4} F^{2}+\frac{1}{2}|D \Phi|^{2}-V\left(|\Phi|^{2}\right)\right)
$$

with $D_{a} \Phi \equiv\left(\partial_{a}+i e A_{a}\right) \Phi$, with a Mexican-hat potential

$$
V\left(|\Phi|^{2}\right)=g\left(|\Phi|^{2}-\frac{z(z+d)}{e^{2}}\right)^{2}+\Lambda
$$

extreme type II limit : $g \rightarrow \infty \Longrightarrow m_{h}^{2} \rightarrow \infty$

$$
L_{\text {bulk }}=-\frac{1}{4} F^{2}-\frac{m^{2}}{2} A^{2}-\Lambda,
$$

Holographic dictionary

Basic entry: bulk fields \leftrightarrow operators in dual QFT
Irreps of schrod labelled by $\Delta, \hat{N}=\ell$, so we work at fixed
ξ-momentum, $\ell: \phi(r, t, \vec{x}, \xi)=f_{\omega, k, \ell}(r) e^{i(\ell \xi-\omega t+\vec{k} \cdot \vec{x})} \leftrightarrow \mathcal{O}_{\ell, \Delta}(\omega, \vec{k})$
scalar operator.
Consider a probe scalar field:
$S[\phi]=-\int d^{d+1} x \sqrt{g}\left((\partial \phi)^{2}+m^{2} \phi^{2}\right)$.
or: δg_{y}^{x} also satisfies this equation
Scalar wave equation in this background:

$$
\left(-r^{d+3} \partial_{r}\left(\frac{1}{r^{d+1}} \partial_{r}\right)+r^{2}\left(2 / \omega+\vec{k}^{2}\right)+r^{4-2 z} l^{2}+m^{2}\right) f_{\omega, \vec{k}, l}(r)=0
$$

For $z \leq 2$, the behavior of the solution near the boundary $(r \sim 0)$ is:

$$
f \propto r^{\Delta}, \quad \Delta_{ \pm}=1+\frac{d}{2} \pm \sqrt{\left(1+\frac{d}{2}\right)^{2}+m^{2}+\delta_{z, 2} /^{2}}
$$

For $z>2$, not power law. (??!)

some basic checks (focus on $z=2$)

1) $\Delta_{+}+\Delta_{-}=d+2$ matches dimensional analysis on

$$
S_{b d y} \ni \int d t d^{d} \times \phi_{0} \mathcal{O}
$$

(ϕ_{0} is the source for \mathcal{O})

$$
[x]=-1,[t]=-2,\left[\phi_{0}\right]=\Delta_{-},[\mathcal{O}]=\Delta_{+} .
$$

2) unitarity bound $\Delta \geq \frac{d}{2}$ matches requirement on m to prevent bulk tachyon instability (analog of BF-bound).

GKPW

$$
\begin{gathered}
\left.\left\langle e^{-\int \phi_{0} \mathcal{O}}\right\rangle \simeq e^{-S\left[\phi_{0}\right]}\right|_{E O M}, \quad S\left[\phi_{0}\right] \equiv S\left[\phi \mid \phi^{r \rightarrow \infty} \rightarrow \phi_{0}\right] \\
f_{\omega, \vec{k}, l}(r) \sim r^{\frac{d+2}{2}} K_{\nu}(\kappa r), \nu=\sqrt{\left(\frac{d+2}{2}\right)^{2}+I^{2}+m^{2}}, \kappa^{2}=21 \omega+\vec{k}^{2}
\end{gathered}
$$

The on-shell action to order ϕ_{0}^{2} is

$$
S\left[\phi_{0}\right]=\frac{1}{2} \int d \omega d k \phi_{0}(-\omega,-k) \mathcal{F}(\kappa, \epsilon) \phi_{0}(\omega, k)
$$

where the 'flux factor' is

$$
\begin{aligned}
& \mathcal{F}(\kappa, \epsilon)=\lim _{r \rightarrow \epsilon} \sqrt{g} g^{r r} f_{\kappa}(r) \partial_{r} f_{\kappa}(r)=\sqrt{g} g^{r r} \partial_{r}\left(r^{1+\frac{d}{2}} \ln K_{\nu}(\kappa r)\right)_{r=\epsilon} \\
& \quad \rightarrow\left\langle\mathcal{O}_{1}(x, t) \mathcal{O}_{2}(0,0)\right\rangle \propto \frac{\Gamma(1-\nu)}{\Gamma(\nu)} \delta_{\Delta_{1}, \Delta_{2}} \theta(t) \frac{1}{\left|\epsilon^{2} t\right|^{\Delta}} e^{-i\left|x^{2} / 2\right| t \mid}
\end{aligned}
$$

consistent with (in fact, determined by [ns]) NR conformal Ward identities.

Is it possible to embed this geometry into string theory?

Answering this question will pay off in two ways:

1. A hint about which NRCFTs we are describing.
2. A way to find finite temperature solutions.

"Null Melvin Twist"

is a machine

which generates new type II SUGRA
solutions from old Ganor et al, Gimon et al. (with different asymptotics)
Previous work: dials set to 'highly non-commutative'.

"Null Melvin Twist"

is a machine
 which generates new type II SUGRA
solutions from old Ganor et al, Gimon et al. (with different asymptotics)
Previous work: dials set to 'highly non-commutative'.
Choose two killing vectors ($\partial_{y}, \partial_{\chi}$) and:

1. Boost along y with boost parameter γ
2. T-dualize along y.
3. Twist: replace $\chi \rightarrow \chi+\alpha y, \alpha$ constant
4. T-dualize back along y
5. Boost back by $-\gamma$ along y
6. Scaling limit: $\gamma \rightarrow \infty, \alpha \rightarrow 0$ keeping $\beta=\frac{1}{2} \alpha e^{\gamma}$ fixed.

Schrödinger spacetime in string theory

Input solution of type IIB supergravity: $A d S_{5} \times S_{5}$

$$
\begin{aligned}
& d s^{2}=\frac{-d \tau^{2}+d y^{2}+d \vec{x}^{2}+d r^{2}}{r^{2}}+d s_{S_{5}}^{2} \quad \vec{x} \equiv\left(x^{1}, x^{2}\right) . \\
& d s_{S_{5}}^{2}=d s_{\mathbb{P}^{2}}^{2}+\eta^{2} . \quad \eta \equiv d \chi+\mathcal{A}=\text { vertical one-form of Hopf fibration }
\end{aligned}
$$

Schrödinger spacetime in string theory

Input solution of type IIB supergravity: $A d S_{5} \times S_{5}$
$d s^{2}=\frac{-d \tau^{2}+d y^{2}+d \vec{x}^{2}+d r^{2}}{r^{2}}+d s_{S_{5}}^{2} \quad \vec{x} \equiv\left(x^{1}, x^{2}\right)$. $d s_{S_{5}}^{2}=d s_{\mathbb{P}^{2}}^{2}+\eta^{2} . \quad \eta \equiv d \chi+\mathcal{A}=$ vertical one-form of Hopf fibration
Feeding this to the melvinizer gives:

$$
d s^{2}=\frac{1}{r^{2}}\left(-\left(1+\frac{\beta^{2}}{r^{2}}\right) d \tau^{2}+\left(1-\frac{\beta^{2}}{r^{2}}\right) d y^{2}+2 \frac{\beta^{2}}{r^{2}} d \tau d y+d \vec{x}^{2}+d r^{2}\right)+d s_{S_{5}}^{2}
$$

Schrödinger spacetime in string theory

Input solution of type IIB supergravity: $A d S_{5} \times S_{5}$
$d s^{2}=\frac{-d \tau^{2}+d y^{2}+d \vec{x}^{2}+d r^{2}}{r^{2}}+d s_{S_{5}}^{2} \quad \vec{x} \equiv\left(x^{1}, x^{2}\right)$.
$d s_{S_{5}}^{2}=d s_{\mathbb{P}^{2}}^{2}+\eta^{2} . \quad \eta \equiv d \chi+\mathcal{A}=$ vertical one-form of Hopf fibration
Feeding this to the melvinizer gives:
$d s^{2}=\frac{1}{r^{2}}\left(-\left(1+\frac{\beta^{2}}{r^{2}}\right) d \tau^{2}+\left(1-\frac{\beta^{2}}{r^{2}}\right) d y^{2}+2 \frac{\beta^{2}}{r^{2}} d \tau d y+d \vec{x}^{2}+d r^{2}\right)+d s_{S_{5}}^{2}$
Defining $\xi \equiv \frac{1}{2 \beta}(y-\tau), t \equiv \beta(\tau+y)$, and reducing on the 5 -sphere:

$$
\longrightarrow d s^{2}=\frac{2 d \xi d t+d \vec{x}^{2}+d r^{2}}{r^{2}}-\frac{d t^{2}}{r^{4}} \quad\left(\operatorname{Schr}_{d=2}^{z=2}\right)
$$

The ten-dimensional metric is sourced by
$B=\beta r^{-2} \eta \wedge(d \tau+d y), \quad F_{5}=(1+\star) \operatorname{Vol}\left(S^{5}\right) \xrightarrow{5 d} A=r^{-2} d t, \quad m^{2}=8, \quad \Lambda$.

Schrödinger spacetime in string theory

Input solution of type IIB supergravity: $\operatorname{AdS} S_{5} \times S_{5}$
$d s^{2}=\frac{-d \tau^{2}+d y^{2}+d \vec{x}^{2}+d r^{2}}{r^{2}}+d s_{S_{5}}^{2} \quad \vec{x} \equiv\left(x^{1}, x^{2}\right)$.
$d s_{S_{5}}^{2}=d s_{\mathbb{P}^{2}}^{2}+\eta^{2} . \quad \eta \equiv d \chi+\mathcal{A}=$ vertical one-form of Hopf fibration
Feeding this to the melvinizer gives:
$d s^{2}=\frac{1}{r^{2}}\left(-\left(1+\frac{\beta^{2}}{r^{2}}\right) d \tau^{2}+\left(1-\frac{\beta^{2}}{r^{2}}\right) d y^{2}+2 \frac{\beta^{2}}{r^{2}} d \tau d y+d \vec{x}^{2}+d r^{2}\right)+d s_{S_{5}}^{2}$
Defining $\xi \equiv \frac{1}{2 \beta}(y-\tau), t \equiv \beta(\tau+y)$, and reducing on the 5 -sphere:

$$
\longrightarrow d s^{2}=\frac{2 d \xi d t+d \vec{x}^{2}+d r^{2}}{r^{2}}-\frac{d t^{2}}{r^{4}} \quad\left(\operatorname{Schr}_{d=2}^{z=2}\right)
$$

The ten-dimensional metric is sourced by

$$
B=\beta r^{-2} \eta \wedge(d \tau+d y), \quad F_{5}=(1+\star) \operatorname{Vol}\left(S^{5}\right) \xrightarrow{5 d} A=r^{-2} d t, \quad m^{2}=8, \quad \wedge .
$$

- No higgs field, alas.
- This can be done for $S^{5} \rightarrow$ any Sasaki-Einstein 5-manifold.

Emblackening

If we feed the AdS planar black hole
(dual of 4d relativistic CFT at finite T) to the melvinizer, we get
$d s^{2}=\frac{1}{r^{2} K}\left(-\frac{f}{r^{2}} d t^{2}-2 d \xi d t-\frac{g}{4}\left(\frac{d t}{2 \beta}-\beta \xi\right)^{2}+K d \vec{x}^{2}+\frac{K d r^{2}}{f}\right)+\frac{1}{K} \eta^{2}+d s_{\mathbb{P}^{2}}^{2}$
where $f \equiv 1+g \equiv 1-\frac{r^{4}}{r_{H}^{4}}$ and $K=1+\beta^{2} \frac{r_{H}^{2}}{r_{H}^{4}}$

Emblackening

If we feed the AdS planar black hole
(dual of 4d relativistic CFT at finite T) to the melvinizer, we get
$d s^{2}=\frac{1}{r^{2} K}\left(-\frac{f}{r^{2}} d t^{2}-2 d \xi d t-\frac{g}{4}\left(\frac{d t}{2 \beta}-\beta \xi\right)^{2}+K d \vec{x}^{2}+\frac{K d r^{2}}{f}\right)+\frac{1}{K} \eta^{2}+d s_{\mathbb{P}^{2}}^{2}$
where $f \equiv 1+g \equiv 1-\frac{r^{4}}{r_{H}^{4}}$ and $K=1+\beta^{2} \frac{r^{2}}{r_{H}^{4}}$
The ten-dimensional metric is sourced by:

$$
\begin{gathered}
B=\beta r^{-2} \eta \wedge\left(\frac{1+f}{2} d t+2(1-f) \beta^{2} d \xi\right) \\
F_{5}=(1+\star) \operatorname{vol}\left(S^{5}\right) \quad e^{-2 \Phi}=K
\end{gathered}
$$

Emblackening

If we feed the AdS planar black hole (dual of 4d relativistic CFT at finite T) to the melvinizer, we get
$d s^{2}=\frac{1}{r^{2} K}\left(-\frac{f}{r^{2}} d t^{2}-2 d \xi d t-\frac{g}{4}\left(\frac{d t}{2 \beta}-\beta \xi\right)^{2}+K d \vec{x}^{2}+\frac{K d r^{2}}{f}\right)+\frac{1}{K} \eta^{2}+d s_{\mathbb{P}^{2}}^{2}$
where $f \equiv 1+g \equiv 1-\frac{r^{4}}{r_{H}^{4}}$ and $K=1+\beta^{2} \frac{r^{2}}{r_{H}^{4}}$
The ten-dimensional metric is sourced by:

$$
\begin{gathered}
B=\beta r^{-2} \eta \wedge\left(\frac{1+f}{2} d t+2(1-f) \beta^{2} d \xi\right) \\
F_{5}=(1+\star) \operatorname{vol}\left(S^{5}\right) \quad e^{-2 \Phi}=K
\end{gathered}
$$

Melvinization preserves lovely Rindler horizon at $r=r_{H}$.

5d reduction

$$
d s^{2}=\frac{K^{-2 / 3}}{r^{2}}\left(-\frac{f}{r^{2}} d t^{2}-2 d \xi d t-\frac{g}{4}\left(\frac{d t}{2 \beta}-\beta \xi\right)^{2}+K d \vec{x}^{2}+\frac{K d r^{2}}{f}\right)
$$

The 5-dimensional metric is sourced by a massive gauge field, scalars:

$$
A=\beta r^{-2}\left(\frac{1+f}{2} d t+2(1-f) \beta^{2} d \xi\right), e^{-2 \Phi}=K
$$

An effective action $(8 \pi G=1)$:

$$
S=\frac{1}{2} \int d^{5} \times \sqrt{-g}\left(R-\frac{4}{3}(\partial \Phi)^{2}-\frac{1}{4} F^{2}-4 A^{2}-V(\Phi)\right)
$$

where $V(\Phi)=4 e^{2 \Phi / 3}\left(e^{2 \Phi}-4\right)$.
\exists consistent truncation of IIB SUGRA w/ massive vector and 3 scalars (!) [MMT] The Lifshitz ($T=0$) spacetime [KLM] is also a solution of this system. BH is not.

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$
Temperature \& Chemical Potential: euclidean regularity requires
$i t \simeq i t+\frac{n}{T}, \xi \simeq \xi+L_{\xi} \mu n \quad \Longrightarrow \quad T=\frac{\kappa}{2 \pi}=\frac{1}{\pi \beta r_{H}}, \mu=-\frac{1}{2 \beta^{2}}$

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$
Temperature \& Chemical Potential: euclidean regularity requires
$i t \simeq i t+\frac{n}{T}, \xi \simeq \xi+L_{\xi} \mu n \quad \Longrightarrow \quad T=\frac{\kappa}{2 \pi}=\frac{1}{\pi \beta r_{H}}, \mu=-\frac{1}{2 \beta^{2}}$
note: $\mu<0$!

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$
Temperature \& Chemical Potential: euclidean regularity requires
$i t \simeq i t+\frac{n}{T}, \xi \simeq \xi+L_{\xi} \mu n \quad \Longrightarrow \quad T=\frac{\kappa}{2 \pi}=\frac{1}{\pi \beta r_{H}}, \mu=-\frac{1}{2 \beta^{2}}$
note: $\mu<0$!
We got finite density for free. Which is good because $S_{B H} \neq 0$, but no antiparticles.
Entropy: $S_{B H}=\frac{1}{4 G_{N}} \frac{L_{y}}{r_{H}^{3}}=V L_{\xi} \frac{\pi^{2} N^{2} T^{3}}{16 \mu^{2}}$

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$
Temperature \& Chemical Potential: euclidean regularity requires
$i t \simeq i t+\frac{n}{T}, \xi \simeq \xi+L_{\xi} \mu n \quad \Longrightarrow \quad T=\frac{\kappa}{2 \pi}=\frac{1}{\pi \beta r_{H}}, \mu=-\frac{1}{2 \beta^{2}}$
note: $\mu<0$!
We got finite density for free. Which is good because $S_{B H} \neq 0$, but no antiparticles.
Entropy: $S_{B H}=\frac{1}{4 G_{N}} \frac{L_{y}}{r_{H}^{3}}=V L_{\xi} \frac{\pi^{2} N^{2} T^{3}}{16 \mu^{2}}$
Free energy : $F=S_{\text {onshell }} T=V L_{\xi} \frac{\pi^{2} N^{2} T^{4}}{32 \mu^{2}}$
$S_{\text {onshell }}$ is renormalized by adding local boundary counterterms
fancy reason: makes the variational problem well defined

Black Hole Thermodynamics

BH is saddle point of $Z=\operatorname{tr} e^{-\frac{1}{T}(H-\mu N)}=\operatorname{tr} e^{-\frac{1}{T}\left(i \partial_{\tau}-\mu i \partial_{\xi}\right)}$
Temperature \& Chemical Potential: euclidean regularity requires
$i t \simeq i t+\frac{n}{T}, \xi \simeq \xi+L_{\xi} \mu n \quad \Longrightarrow \quad T=\frac{\kappa}{2 \pi}=\frac{1}{\pi \beta r_{H}}, \mu=-\frac{1}{2 \beta^{2}}$
note: $\mu<0$!
We got finite density for free. Which is good because $S_{B H} \neq 0$, but no antiparticles.
Entropy: $S_{B H}=\frac{1}{4 G_{N}} \frac{L_{y}}{r_{H}^{3}}=V L_{\xi} \frac{\pi^{2} N^{2} T^{3}}{16 \mu^{2}}$
Free energy : $F=S_{\text {onshell }} T=V L_{\xi} \frac{\pi^{2} N^{2} T^{4}}{32 \mu^{2}}$
$S_{\text {onshell }}$ is renormalized by adding local boundary counterterms
fancy reason: makes the variational problem well defined
Mystery: we are forced to add extrinsic boundary terms for the massive gauge field: $S_{\mathrm{bdy}} \ni \int n^{\mu} A_{\nu} F^{\mu \nu}$
The required coefficient is exactly the one that changes the boundary
conditions on A_{μ} from Dirichlet to Neumann.

Boundary stress tensor

$$
S_{\mathrm{bdy}}=\int \sqrt{\gamma}\left(\Theta+c_{0}+c_{1} \Phi+c_{2} \Phi^{2}+n^{\mu} A^{\mu} F_{\mu \nu}\left(c_{5}+c_{6} \Phi\right)\right)
$$

Vary metric at boundary:

$$
T_{\nu}^{\mu}=-\frac{2}{\sqrt{\gamma}} \frac{\delta S_{\text {onshell }}}{\delta \gamma_{\mu}^{\nu}}=\Theta_{\nu}^{\mu}-\delta_{\nu}^{\mu} \Theta-\text { c.t. }\left.\right|_{b d y} \quad \Theta=\text { extrinsic curvature }
$$

Fix counterterm coeffs w/

$$
\text { -Ward identity: } 2 E=d P=\text { residual bulk gauge symmetries }
$$

-first law of thermodynamics: $(E+P=T S+\mu N)$

Boundary stress tensor

$$
S_{\mathrm{bdy}}=\int \sqrt{\gamma}\left(\Theta+c_{0}+c_{1} \Phi+c_{2} \Phi^{2}+n^{\mu} A^{\mu} F_{\mu \nu}\left(c_{5}+c_{6} \Phi\right)\right)
$$

Vary metric at boundary:

$$
T_{\nu}^{\mu}=-\frac{2}{\sqrt{\gamma}} \frac{\delta S_{\text {onshell }}}{\delta \gamma_{\mu}^{\nu}}=\Theta_{\nu}^{\mu}-\delta_{\nu}^{\mu} \Theta-\text { c.t. }\left.\right|_{b d y} \quad \Theta=\text { extrinsic curvature }
$$

Fix counterterm coeffs w/

$$
\text { -Ward identity: } 2 E=d P=\text { residual bulk gauge symmetries }
$$ -first law of thermodynamics: $(E+P=T S+\mu N)$

$$
\longrightarrow \mathcal{E}=\frac{E}{V}=-\int \sqrt{\gamma} T_{t}^{t}=\frac{1}{16 \pi G r_{H}^{4}}=\frac{\pi^{2} N^{2}}{64} L_{\xi} \frac{T^{4}}{\mu^{2}}
$$

Boundary stress tensor

$$
S_{\mathrm{bdy}}=\int \sqrt{\gamma}\left(\Theta+c_{0}+c_{1} \Phi+c_{2} \Phi^{2}+n^{\mu} A^{\mu} F_{\mu \nu}\left(c_{5}+c_{6} \Phi\right)\right)
$$

Vary metric at boundary:

$$
T_{\nu}^{\mu}=-\frac{2}{\sqrt{\gamma}} \frac{\delta S_{\mathrm{onshell}}}{\delta \gamma_{\mu}^{\nu}}=\Theta_{\nu}^{\mu}-\delta_{\nu}^{\mu} \Theta-\text { c.t. }\left.\right|_{b d y} \quad \Theta=\text { extrinsic curvature }
$$

Fix counterterm coeffs w/

$$
\text { -Ward identity: } 2 E=d P=\text { residual bulk gauge symmetries }
$$

$$
\text { -first law of thermodynamics: }(E+P=T S+\mu N)
$$

$$
\longrightarrow \mathcal{E}=\frac{E}{V}=-\int \sqrt{\gamma} T_{t}^{t}=\frac{1}{16 \pi G r_{H}^{4}}=\frac{\pi^{2} N^{2}}{64} L_{\xi} \frac{T^{4}}{\mu^{2}}
$$

Who is T_{t}^{ξ} ? Just as T_{μ}^{χ} is the R-charge current,
Density: $\quad \rho=\int \sqrt{\gamma} T_{t}^{\xi}=\frac{\beta^{2}}{16 \pi G r_{H}^{4}}=\frac{\pi^{2} N^{2} T^{4}}{32 \mu^{3}} L_{\xi}$
Note: $T_{\xi}^{\xi}, T_{\xi}^{t}=\infty$ with naive falloffs on $\delta_{\mu \nu}$. We don't care about these anyway.

comments about the result:

Scale symmetry symmetry demands that $F(T, \mu)=T^{2} f\left(\frac{T}{\mu}\right)$
[Landau-Lifshitz]

- unitary fermions: $f(x)$ has a kink at the superfluid transition.
- for some reason, we find: $f(x)=x^{2}$.
- the reason [MMTV5]: a) if solution arises from DLCQ, an extra
(boost) symmetry: $t \rightarrow \alpha t, \xi \rightarrow \alpha^{-1} \xi \Longrightarrow T \rightarrow \frac{T}{\alpha}, \mu \rightarrow$ $\frac{\mu}{\alpha^{2}}, F \rightarrow F \Longrightarrow F(T, \mu)=g\left(\frac{\mu}{T^{2}}\right)$
b) melvin twist doesn't change planar amplitudes
(bulk explanation: symmetry of tree-level string theory
boundary explanation: 'non-commutative phases' cancel)

Viscosity

Kubo Formula: $\quad \eta=-\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im}\left\langle T_{y}^{x} T_{y}^{x}\right\rangle$
T_{y}^{x} couples to h_{x}^{y} in the bulk. h_{x}^{y} solves the scalar wave equation.
The field theory stress tensor is an operator with particle number zero:
source is $h_{x}^{y}(\ell=0) . \Longrightarrow \eta=\frac{\pi L_{\xi} N^{2}}{32} \frac{T^{3}}{\mu^{2}}$

Viscosity

Kubo Formula: $\quad \eta=-\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im}\left\langle T_{y}^{x} T_{y}^{x}\right\rangle$
T_{y}^{x} couples to h_{x}^{y} in the bulk. h_{x}^{y} solves the scalar wave equation.
The field theory stress tensor is an operator with particle number zero:
source is $h_{x}^{y}(\ell=0) . \Longrightarrow \eta=\frac{\pi L_{\xi} N^{2}}{32} \frac{T^{3}}{\mu^{2}}$

$$
\Longrightarrow \quad \frac{\eta}{s}=\frac{1}{4 \pi} .
$$

Viscosity

Kubo Formula: $\quad \eta=-\lim _{\omega \rightarrow 0} \frac{1}{\omega} \operatorname{Im}\left\langle T_{y}^{x} T_{y}^{x}\right\rangle$
T_{y}^{x} couples to h_{x}^{y} in the bulk. h_{x}^{y} solves the scalar wave equation.
The field theory stress tensor is an operator with particle number zero:
source is $h_{x}^{y}(\ell=0) . \quad \Longrightarrow \quad \eta=\frac{\pi L_{\xi} N^{2}}{32} \frac{T^{3}}{\mu^{2}}$

$$
\Longrightarrow \quad \frac{\eta}{s}=\frac{1}{4 \pi} .
$$

- schr BH \in
$\left\{\right.$ spacetimes for which the argument of [lqbal-Liu] shows that $\frac{\eta}{s}=\frac{1}{4 \pi}$ \}
- [c. McEntee, JM, D. Nickel]: confirmed the Kubo result for η by finding diffusion pole for transverse momentum:

$$
\omega=D k^{2}, \quad D=\frac{\eta}{\rho}
$$

Final remarks

- Not unitary fermions, so far. ('Bertsch parameter' $\frac{E(T=0)}{E_{0}(T=0)}=0$.)
- Most pressing: how to modify to remove lightcone inheritance, change $F(T, \mu)$, describe $\mu>0$.
- Our string theory embedding for gravity duals of Galilean invariant CFTs with $z=2$.
which z arise in string theory? (Hartnoll-Yoshida: integer $z \geq 2$ at $T=0$)
- We have found a black solution which asymptotes to the NR metric for $d=2, z=2$. (Kovtun-Nickel: arbitrary d in a toy model)
It would be nice to find black hole solutions for other values of z.
- Fluctuations in sound channel McEntee-JM-Nickel see also [Rangamani et al 0811.2049]
- Superfluid?
 Should break ξ-isometry (like Gregory-Laflamme), cut off IR geometry.
- Spectrum of \hat{N} needn't be \mathbb{Z} : e.g. multiple species. inhomogeneous ground states (LOFF)? most mysterious near unitarity point. so far: we've found a vacuum solution.

The end.

multiple species

$$
L_{\text {bulk }}=R+\Lambda-\frac{1}{4} F_{1}^{2}-\frac{1}{2} m_{1}^{2} A_{1}^{2}-\frac{1}{4} F_{2}^{2}-\frac{1}{2} m_{2}^{2} A_{2}^{2}
$$

with (for $d=2$)
$m_{1}^{2}=4 z, \quad m_{2}^{2}=-4(z-2), \quad \Lambda=\left(26-7 z+z^{2}\right)$. The
z-dependence of Λ is a new development.
The solution is

$$
d s^{2}=-r^{-2 z} d t^{2}+r^{-2}\left(-2 d \xi_{+} d t+d \vec{x}^{2}+d r^{2}\right)+d \xi_{-}^{2} r^{2 z-4}
$$

with

$$
A_{1}=\Omega_{1} r^{-z} d t, \quad A_{2}=\Omega_{2} r^{z-2} d \xi_{-} .
$$

Interestingly, for $z=2$, the $g_{\xi_{-}-\xi_{-}}$coefficient is 1 .

$$
\left[K_{i}, P_{j}\right]=i \delta_{i j} \hat{N}, \quad \hat{N}=i \partial_{\xi_{+}}
$$

So, if we set $\xi_{ \pm}=\xi^{1} \pm \xi^{2}$ and compactify

$$
\xi_{1} \simeq \xi_{1}+L_{1}, \quad \xi_{2} \simeq \xi_{2}+L_{2}
$$

then the spectrum of \hat{N} is

$$
\left\{\left.\frac{n_{1}}{L_{1}}+\frac{n_{2}}{L_{2}} \right\rvert\, n_{1,2} \in \mathbb{Z}\right\} ;
$$

in particular $\frac{L_{1}}{L_{2}}$ needn't be rational.
We can think of $i \partial_{\xi_{1}}$ and $i \partial_{\xi_{2}}$ as the conserved particle numbers of the individual particle species; only their sum appears in the schrodinger algebra.
We also know how to construct an example which allows transitions between species, i.e. spectrum of $\hat{N} \neq \mathbb{Z}$ but there is only one conserved particle number.

The end.

algebra

$$
\begin{gathered}
{\left[M_{i j}, N\right]=\left[M_{i j}, D\right]=0,\left[M_{i j}, P_{k}\right]=i\left(\delta_{i k} P_{j}-\delta_{j k} P_{i}\right),} \\
{\left[P_{i}, P_{j}\right]=\left[K_{i}, K_{j}\right]=0,\left[M_{i j}, K_{k}\right]=i\left(\delta_{i k} K_{j}-\delta_{j k} K_{i}\right)} \\
{\left[M_{i j}, M_{k l}\right]=i\left(\delta_{i k} M_{j k}-\delta_{j k} M_{i l}+\delta_{i l} M_{k j}-\delta_{j l} M_{k i}\right)} \\
{\left[D, P_{i}\right]=i P_{i},\left[D, K_{i}\right]=(1-z) i K_{i},\left[K_{i}, P_{j}\right]=i \delta_{i j} N,} \\
{\left[H, K_{i}\right]=-i P_{i},[D, H]=z i H,[D, N]=i(2-z) N,} \\
{[H, N]=\left[H, P_{i}\right]=\left[H, M_{i j}\right]=0 .}
\end{gathered}
$$

