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[Main references: Senthil and Vishwanath, 1209.3058 [1]; Senthil and Xu, 1301.6172 [2] and
some talks by those authors. A useful, brief review is the second part of [3]. See also this
Journal Club for Condensed Matter Physics commentary by Matthew Fisher.]

0.1 Introductory remarks

These are notes for a series of lectures given at SPT FRIDAYs in May and June 2013.

The goal is to understand interacting phases of matter (in D spacetime dimensions) which
can be characterized by their edge states (in D � 1 spacetime dimensions). We can refine
this understanding by specifying the symmetry group G of the Hamiltonian. Such phases
are called symmetry-protected topological (or trivial) states, or SPT states, protected by the
group G.

Notice that the possibility of characterizing a state this way implies that the D � 1-
dimensional models involved must not be realizable intrinsically in D�1 dimensions, consis-
tent with the symmetries involved. If they could be so realized, preserving G, we could paint
them on the surface of any bulk state, and they therefore could not be characteristic. This
suggests a useful strategy for identifying obstructions to symmetry-preserving regulators of
quantum field theory (QFT), which has been exploited so far in examples in [1, 4, 5, 6]. An
attempt to systematize these obstructions is here [7].

Necessary features of a state which may be characterized by its edge include:

• A bulk energy gap. For example, without a gap, stu↵ we do at the boundary can have
an influence on what happens in the interior, which falls o↵ only like a power law, which
we cannot control. In contrast, with an energy gap, the influence of modifications at
the edge can be parametrically localized by increasing the gap.

• No topological order1, and in particular no fractionalized bulk excitations. Such non-
trivial bulk excitations would by definition not care about anything we do to the edge
states, no matter how horrible.

These states have a group structure (explained in [3]). The group law is just composition:
take the two summand states and stick them on top of each other, and let them interact
in all ways consistent with the protecting symmetry G. The inverse of an SPT state is its
mirror image; this allows the edge states to pair up.

1
Let’s provisionally say that a state has topological order if its groundstate degeneracy depends on the

topology of space. The best definition of topological order in general dimension is, I think, an interesting

open question. In 2+1 dimensions, nontrivial transformation under adiabatic modular transformations seems

to capture everything [8]; topology-dependent groundstate degeneracy is a corollary.
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A conjecture for the form of this group for a given G,D is given in [9]. There are exceptions
to it [1, 4].

We will make our way towards studying bosons in 3+1 dimensions. These make an interest-
ing point of focus because interesting states of bosons require interactions, lest they condense.
‘Bosons’ includes spin systems (via a map which can be found in cond-mat texts), in which
context it is better to call these states (symmetry-protected) ‘topological paramagnets’ [1].
They are the basic ingredient in SPT states of fermions [10, 11, 12, 13, 14].

How can we characterize such states?

1. For symmetry groups which contain a U(1) factor, we can couple them to external
‘electromagnetic’ gauge fields, and ask about the response. In 2+1 dimensions without
time-reversal symmetry, this means a quantized Hall response; in 3+1 dimensions with
time-reversal symmetry, this means a quantized magnetoelectric e↵ect.

2. In the absence of a U(1) symmetry, we will have to do something else. One route
to identifying a label on SPT states (which will allow us to distinguish them without
trying to find every possible path between them in the space of Hamiltonians) is to
ask what happens if we gauge (some subgroup of) the protecting symmetry [15, 16].

3. Another possibility is to focus on the weird stu↵ that goes on at the surface. Following
[1], the point of view of defects in the would-be-bose-condensate – the dual vortices –
turns out to be very fruitful. The completely trivial Mott insulator of the bosons is
described in this langauge as a condensate of featureless vortices (in 2+1d; in 3+1d
they are vortex loops). More interesting states are obtained if the vortex defects carry
some decorations. A scheme for understanding all boson SPT states then follows by
characterizing possible decorations of the vortices that can keep them from condens-
ing without doing something else interesting (like breaking a symmetry or producing
topological order).

1 Building blocks

The simplifying assumptions defining SPT states allow them to be built from lower-dimensional
parts. This is called the ‘coupled-layer’ (or (I think misleadingly because of translation-
invariance issues) ‘network-model’) construction. So it will be a good idea to understand
lower-dimensional examples well. We begin with a brief tour through the examples which
will appear the most. All of the ingredients (I think) involved in this tour will be used
crucially in the later discussion!
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1.1 D = 0 + 1 edge: A single spin 1

2

A single spin-1
2
is arguably the simplest example of an unkillable state, and hence a possible

edge state for an SPT state2. The general hamiltonian (up to a constant) is

H = ~

h · ~�,

parametrized by the Zeeman field ~h. If we insist on preserving the SU(2) spin rotation sym-
metry, the Hamiltonian has to be zero, and we are guaranteed a degeneracy. Alternatively,
if we preserve the anti-unitary symmetry which acts by T : ~� 7! �~� – the usual action
of time-reversal on a spin – then we are also guaranteed this degeneracy of this Kramers’
doublet.

So we may say that the degeneracy is protected by either SU(2) or ZT
2 .

Coherent state quantization of a spin-1
2
will play a useful role below. For an explanation of

this, see §5.2.2 and §5.2.3 of my Physics 215C lectures or Dan Arovas’ Quantum Mechanic’s
Toolbox.

1.2 D = 1 + 1 bulk: Haldane chains

Chains of integer spins provide the oldest known ex-
ample of an SPT state. The important property of
integer spins is that they don’t faithfully represent all
of SU(2) – only SO(3) actually acts on them. The
chain of spin-1s is easiest to realize physically, but it
will be easier to discuss a chain where each site has an additional singlet. So if you like, we
are embedding the Hilbert space of each spin 1 into that of a pair of spin 1

2
s (as in the figure

at right)3. The (Heisenberg) Hamiltonian

HHeisenberg =
2n�1X
j=1

J

j

~S
j

· ~S
j+1

preserves spin SU(2) and ZT
2 . We’ll let

J

j

=

(
J

o

, j odd

J

e

, j even

The trivial phase is obtained by making spin singlets of spin 1
2
s associated to a single site

(top figure); this is preferred when J

o

> J

e

. The non-trivial (Haldane) phase – preferred

2
I say arguably because it is not in the thermodynamic limit

3
So the model I am describing here is not exactly a spin-1 chain. For each pair of sites, we have

1
2 ⌦ 1

2 =

0� 1. I find it easier not to project out the extra singlet.
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when J

o

< J

e

– is made by pairing spins from successive sites; this leaves behind an unpaired
spin 1

2
at each end, and realizes the edge theory mentioned in subsection §1.1.

Both of the previous states are gapped. The critical point between these two states occurs
when J

o

= J

e

, and this is simply the spin 1
2
(nearest-neighbor) Heisenberg model. This

model has a gapless spin wave excitation, described by a certain 1+1d CFT, which (for this
reason and many others) is the subject of 1.3.

These states have a useful continuum description in terms of a non-linear sigma model
(NLSM) whose field variable is the would-be Neel vector n̂ 2 S

2. This can be derived quite
directly by coherent state quantization. The (euclidean) action is

S[n̂] =

Z
dxdt

1

g

2
@

µ

n̂ · @µn̂+ i✓H .

The theta term here is

H =

Z
dxdt

1

⌦2

n̂

a

@

x

n̂

b

@

t

n̂

c

✏

abc

where ✏
abc

is the completely antisymmetric tensor with nonzero entries equal to ±1. This
theta term (sometimes called Hopf term) is very topological. It is an integral of a total
derivative. It therefore does not a↵ect the equations of motion for n̂, and it does not appear
in Feynman rules. But it does matter for non-perturbative physics. It has many similarities
to the ✓ term in gauge theory in D = 3 + 1, S

D=4[A] 3 i✓
R
M4

trF^F
16⇡2 (the coe�cient of i✓ is

also an integer if M4 is closed.).

H counts the number of times the field configuration n̂ maps the spacetime (which is a
two-sphere for maps which approach a unique value at 1) into the target space S

2. You
can see this from the fact that the integrand in H is the area element of the image of
the map. If we integrate over a closed spacetime manifold, H is an integer – it represents
⇡

D=1+1(S2) = Z. Naively this means that physics only depends on ✓ modulo 2⇡. It is true
of the bulk spectrum, which is determined by the partition function, obtainable from the
partition function on a closed spacetime. But it is not true of all physics.

Classically, g is marginal (recall that a scalar field has engineering dimension zero in D =
1 + 1), but quantumly, this model is asymptotically free. More specifically, because the
target space S

2 has positive curvature, its radius (/ g

�1) goes toward zero in the IR. This
is simple to see in perturbation theory (where the ✓ term has no e↵ect) about small g (see
e.g. Physics 215C lectures, §5.2).

What happens when g � 1? Then perturbation theory breaks down and ✓ can matter. For
✓ 2 2⇡Z, it is a nontrivial fact, analogous to the behavior of D = 3 + 1 Yang-Mills theory,
that this produces, by dimensional transmutation, a mass gap,

⇤Haldane ⇠ ⇤0e
� c0

4⇡g

2

where c0 is a number and ⇤0 is the UV scale at which we specify g. I’ve called it ⇤Haldane,
but the first evidence for it (at ✓ = 0) came from Polyakov [17].
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When ✓ = ⇡, the story is di↵erent.

For a review of this subject (especially from the QFT point of view which I am emphasizing),
see A✏eck, Quantum spin chains and the Haldane gap.

We can also allow NN interactions, terms in H of the form J

(2)
~S
j

· ~S
j+2. If we make J

(2)

big enough, we can close the bulk gap. In particular, near J2 ⇠ 1
4
J1 (like in the long-range

Haldane-Shastry chain with J

(n) ⇠ 1
2

n

which is critical) we have a 1-order transition where
the gap opens.

At a bit larger J

(2), at the Majumdar-Ghosh point of the spin 1
2
chain, the Hamiltonian

is exactly solvable and has two groundstates related by a one-site translation. These states
are valence bond states, just of the form of the spin-1 limit, but now the two states are
degenerate, spontaneously breaking translation invariance.

We’ll come back to the variation of the edge states within the bulk phase, and the important
question of which edge phase transitions must be bulk phase transitions.

We can also add terms which go like powers of ~S
i

· ~S
j

, as in the AKLT models. For more
on the space of spin-symmetric Hamiltonians on the spin 1

2
chain see Dan Arovas’ notes or

the book by Auerbach.

1.3 D = 1 + 1 edge: SU(2)
1

WZW conformal field theory

Just now we talked about SO(3) spin chains (i.e.̃spin chains where each site of the lattice
is in a representation of SO(3), not a projective one, as per footnote 3), and the fact that
they have a gapped phase and are described by a NLSM with ✓ = 2⇡. More generally, the
coe�cient of the topological term is ✓ = 2s⇡. I want to say more about the continuum
QFT describing the gapless state that arises when 2s is odd. This model will play a very
important role below.

This model has many di↵erent representations, related by various kinds of bosonization
operations. For a longer review of 2d CFT in a related context, see Fradkin’s 2d edition,
chapter 7.

All these models have Virasoro central charge c = 1. For a discussion of the definition and
importance of this quantity, see e.g. Ginsparg’s lectures [18].

1. A single free boson ‘at the SU(2) radius’. Recall that a free boson in 1+1d dimensions
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enjoys a line of fixed points4; the coordinate along this line is called the ‘Luttinger
parameter’ or the ‘radius’; the latter interpretation being natural if we think of the
scalar field as the coordinate in a sigma model on the circle. This parameter determines
the spectrum of scaling dimensions of the vertex operators ei↵·�.

A word about massless fields in two dimensions: Recall that the general solution to
the wave equation in D = 1 + 1

0 = ⇤� =
�
�@2

t

+ @

2
x

�
� is �(x, t) = �+(x+ t) + ��(x� t).

In euclidean time, �± depend (anti-)holomorphically on the complex coordinate z ⌘
x+ i⌧ and the machinery of complex analysis becomes useful.

Consider a compact free boson � ' �+ 2⇡ in D = 1 + 1 with action

S[�] =
R

2

8⇡

Z
dxdt@

µ

�@

µ

�. (1)

Notice that if we redefine �̃ ⌘ R� then we absorb the coupling R from the action
S[�̃] = 1

8⇡

R
dxdt@

µ

�̃@

µ

�̃ but now �̃ ' �̃+ 2⇡R has a di↵erent period – hence ‘radius’.

So: there is a special radius (naturally called the SU(2) radius) where new operators of
dimension (1, 0) and (0, 1) appear, which are charged under the boson number current
@±�. Their dimensions tell us that they are (chiral) currents, and their charges indicate
that they combine with the obvious currents @±� to form the (Kac-Moody-Bardakci-
Halpern) algebra SU(2)

L

⇥ SU(2)
R

.

Exercise: SU(2)1 current algebra from free bosons

Here you will verify that the model (1) does in fact host an SU(2)
L

⇥ SU(2)
R

algebra
involving winding modes – configurations of � where the field winds around its target
space circle as we go around the spatial circle. We’ll focus on the holomorphic (L)
part; the antiholomorphic part will be identical.

Define
J

±(z) ⌘: e±i�(z) :, J

3 ⌘ i@�(z).

The dots indicate a normal ordering prescription for defining the composite operator:
no wick contractions between operators within a set of dots.

(a) Show that J3
, J

± are single-valued.

(b) Compute the scaling dimensions of J3
, J

±. The scaling dimension � of a holomor-
phic operator in 2d CFT can be extracted from its two-point correlation function:

hO†(z)O(0)i ⇠ 1

z

2�
.

4
actually the space of fixed points is a bit more complicated – it has a branched structure (see Figure 1

of [19]).
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For free bosons, all correlation functions of composite operators may be computed
using Wick’s theorem and

h�(z)�(0)i = 1

R

2
log z.

(c) Defining J± ⌘ 1p
2
(J1±iJ

2) show that the operator product algebra of these currents
is

J

a(z)J b(0) ⇠ k�

ab

z

2
+ i✏

abc

J

c(0)

z

+ ...

with k = 1. This is the level-k = 1 SU(2)Kac-Moody-Bardakci-Halpern algebra.

(d) [Bonus tedium] Defining a mode expansion for a dimension 1 operator,

J

a(z) =
X
n2Z

J

a

n

z

�n�1

show that
[Ja

m

, J

b

n

] = i✏

abc

J

c

m+n

+mk�

ab

�

m+n

with k = 1, which is an algebra called A�ne SU(2) at level k = 1. Note that the
m = 0 modes satisfy the ordinary SU(2) lie algebra.

For more details (and the solutions and some applications in string theory) see problem
5 here.

2. By varying the radius of the boson above, we can reach ‘the free-fermion radius’, where
the model is equivalent to a single Dirac fermion. Each value of the radius specifies a
CFT with c = 1. Therefore, we see that a single free (complex) fermion is related to
SU(2)1 by a marginal deformation.

For more on abelian bosonization, see problem 2 here and problem 1 here.

3. Non-linear sigma model on SU(2) with WZW term at level 1 [20]. In this model, the
field variable g takes values in the group SU(2). The SU(2) group manifold is S3, as
you can see by the mapping

g = �

01 + i~� · ~�, �

2
0 + ~

�

2 = 1.

The non-abelian currents are [20]

J+ =
i

2⇡
g�1

@+g, J� = � i

2⇡
@�gg�1

.

In order to write its action in a manifestly symmetric way, we have to extend the
field into a (possibly fictitious) extra dimension whose coordinate is u. We do this
in such a way that the real system lives at u = 1: ~g(t, x, u = 1) = ~g(t, x), and
g(t, x, u = 0) = 1 2 SU(2) – it goes to the north pole at the other end of the extra
dimension for all t. This means that the space is really a disk with the origin at u = 0,
and the boundary at u = 1. Call this disk B, its boundary @B is the real spacetime.
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We can write the WZW term in terms of the S

3-valued field �0,1,2,3 as

W [�] =
2⇡

⌦3

Z
B3

�

· ^ d�· ^ d�· ^ d�·
✏····.

The integrand here is the volume element of the image of a chunk of spacetime in
the target S

3. If we integrate over the union of two balls with cancelling boundaries
B3 [ B̄3, we get an integer multiple of 2⇡.

The coe�cient k of W in the action must be an integer since B3 and B̄3 give equally
good definitions of W , which di↵er by 2⇡k, which will not a↵ect the path integral if
k 2 Z.
This WZW term is less topological than the theta term we discussed above, in the
sense that it a↵ects the equations of motion for g(x, t).

The following table gives a comparison between theta terms and WZW terms for a
field theory in D spacetime dimensions, on a spacetime M

D

:

theta term WZW term
H =

R
M

D

h W =
R
B

D+1
w, @B

D+1 = M

D

h = dq w = dv
Doesn’t a↵ect EOM A↵ects EOM

Invisible in perturbation theory
Appears in perturbation theory,

e.g. in beta functions

H 2 Z for M
D

closed
Coe�cient of W 2 Z

in order for path integral to be well-defined.

4. Massless Schwinger model.

Z =

Z
[D 

↵

D ̄

↵

DA

µ

]e�S

, S =

Z
d2
x

 X
↵=1,2

 ̄

↵

�

µ (@
µ

� iA
µ

) 
↵

� 1

4e2
F

µ⌫

F

µ⌫

!

This model has a manifest U(N) symmetry, where N is the number of fermion species,
acting by  

↵

! U

↵�

 

�

. Actually, the symmetry is bigger – we can act independently
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on left- and right-movers5

But the U(1) axial current

j

µ

5 ⌘
X
↵

 ̄

↵

��

µ

 

↵

, � ⌘ �

t

�

x

is anomalous:

@

µ

j

µ

5 = �i
N

2⇡
✏

µ⌫

F

µ⌫ |
N=2 .

A

µ

= ✏

µ⌫

@

⌫

✓

a + @

µ

✓

b

 

↵

! e

�i�✓a�i✓
b

 

↵

⌘  

0

makes  0 neutral [21].

The theta angle in the spin system is the theta angle in the gauge theory ✓✏
µ⌫

F

µ⌫ .

One reason to care about this description (besides the fact that it comes from ancient
high-energy literature [22]) is that it is a successful example of a parton construction –
the introduction of a gauge theory as a description of a system of condensed matter.
The fermions (in this context, ‘spinons’) are related to the original spins by

~S
r

=
1

2
 

†
r

~� 
r

where I am omitting the ↵ = 1, 2 index. In order for the model of  s to describe the
same Hilbert space, we must project onto states where there is one spin per site, and
there are no charge ( †

r

 

r

) fluctuations ; this projection is implemented by A

t

, the time
component of the gauge field above.

A second reason to care about this description is that it illuminates what happens when
we keep cranking up ✓ past 2⇡ ([23], section 4). In 1+1d, an electrically-charged particle
is like a capacitor plate, separating regions with di↵erent values of the electric field;
the jump in the field is proportional to its electric charge. The theta term in 2d gauge
theory ✓

R
dxdt✏

µ⌫

F

µ⌫ = ✓

H
C1

A is then a demand for an electric field of magnitude
✓, since it’s the source term associated with a particle of charge ✓ at infinity.

But an electric field can be screened by the (massless!) dynamical charges created by
 

†. If the field is bigger than e/2 then it is energetically favorable to pair create the
particles and reduce theta. The particles then fly to the boundary.

This screening of theta has an implementation in the spin chain as well. A useful
description of a higher-spin chain (associated with ✓ = 2s⇡) can be obtained by de-
composing the spin-s into a collection of spin 1

2
s. The screening process is described

in terms of the formation of valence bonds between various constituent spin-1
2
s.

5
Recall that in D = 1 + 1 we may choose a basis for the Dirac gamma matrices (2 ⇥ 2) such that the

Dirac equation takes the form

0 = �

µ

D

µ

✓
 +

 �

◆
=

✓
D+ �
D� +

◆
so that the spin chirality � ± = ± ± (� = �

t

�

x

) is correlated with the movingness  ± =  ±(x±). A nice

choice is �

t

= i�2
, �

x

= �1
.
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Note that the fixed point of the sigma model with WZW term of level k has central charge

c =
3k

k + 2

which is c = 1 for k = 1 and c = 3 for k = 1. This latter result makes sense because the
fixed point for the radius of the target space is proportional to k. In the large k limit, the
curvature therefore becomes small, and the model becomes a semiclassical model of weakly
coupled coordinates on the target space, and must have c = the number of dimensions of
the target space.

Notice that the fixed point has a huge emergent symmetry group, O(4) ' SU(2)
L

⇥SU(2)
R

.
This is manifest in terms of the matrix representation, where the two SU(2)s are right and
left action on the matrix. It is a weird fact that the lexicographic right and left actions
on the matrix are also respectively represented by right- and left-moving chiral currents in
spacetime.

This O(4) mixes the Neel order parameter ~S with VBS order:

g = 1 �

0|{z}
dimer

ordering
(spin singlet)

+i~� · ~n|{z}
Neel

ordering
(spin triplet)

A physical consequence of this is that the spin-spin correlations should have the same power
laws as those of the dimer ordering.

1.4 D = 2 + 1 bulk: Boson ⌫ = 2 IQH state

We can distinguish SPT states in 2+1 dimensions with a U(1) symmetry by their
quantized Hall response. No fractionalization means that �

xy

must be an integer
in the basic units of e

2

h

. The argument for this actually has a stronger consequence

[24] for bosons: �
xy

must be an even multiple of e

2

h

. Thread 2⇡ worth of localized
magnetic flux through some region of the sample (as in the ⌦ at right). This
means

2⇡ = �� =

Z
dt@

t

✓I
R|@R=C

d~a · ~B
◆

Faraday
= �

Z
dt

I
C

~

E · d~` j

r

=�
xy

E

'

= � 1

�

xy

2⇡

Z
dtj

r| {z }
=�Q

which says that the inserted flux sucks in an amount of charge

�Q = �

xy

.

This object is a localized excitation of the system, and hence must have bosonic statistics,
by assumption of no fractionalization. But from the Bohm-Aharonov e↵ect, it has statistics
angle ⇡�

xy

, which must therefore be in 2⇡Z.
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A realization of the basic boson IQHE with ⌫ ⌘
�

xy

e

2
/h

= 2 is provided in [24]. In addition to electrical
Hall conductivity, it has no thermal Hall conductivity.
In general, this is proportional to c

L

� c

R

, the chiral
central charge. These properties can be understood
quite directly from the edge CFT, which is just the
(non-chiral in matter content) SU(2)1 WZW model,
with a funny assignment of symmetries. Specifically, although c

L

= c

R

, only the left mover
�+ carries the U(1) charge. This means that preserving U(1), we can’t backscatter, that is
we can’t add to the action terms like �S = g± cos (�

L

± �

R

+ ↵) which would lift the edge
states.

2 Electromagnetic response for SPT states protected

by G � U(1)

First: recall free fermion topological insulators, protected by U(1) ⇥ ZT
2 .

The e↵ective field theory for any 3+1d insulator, below the energy gap, has the following
form

Se↵[ ~E,

~

B] =

Z
d3
xdt

✓
✏

~

E

2 � 1

µ

~

B

2 + 2↵✓ ~E · ~B
◆

(2)

where ✏, µ are the dielectric constant and permittivity, and ↵ is the fine structure constant.
Flux quantization implies that

↵

32⇡2

Z
M4

~

E · ~B 2 Z

is an integer for any closed 4-manifold. This means that the partition function is periodic

Z(✓ + 2⇡) = Z(✓)

and hence the spectrum on a closed 3-manifold is periodic in ✓. (As we will discuss, shifting
✓ by 2⇡ is not so innocuous on a space with boundary or for the wavefunction.)

Time reversal acts by
T : ( ~E,

~

B) ! ( ~E,� ~

B)

which means ✓ ! �✓, which preserves the spectrum only for ✓ 2 ⇡Z. So time-reversal
invariant insulators are labelled by a quantized ‘magnetoelectric response’ ✓/⇡ [25].

Now consider what happens on a space with boundary. The interface with vacuum is a
domain wall in ✓, between a region where ✓ = ⇡ (TI) and a region where ✓ = 0 (vacuum).
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The electromagnetic current derived from (2) is6

j

µ

EM

=
e

2

2⇡h
✏

µ···
@·✓@·A· + · · · (3)

where the · · · indicate contributions to the current coming from degrees of freedom at the
surface which are not included in (2). If we may ignore the · · · (for example because the
edge is gapped), then we find a surface Hall conductivity

�

xy

=
e

2

h

�✓

2⇡
=

e

2

h

✓
1

2
+ n

◆
(4)

where �✓, the change in ✓ between the two sides of the interface, is a half-integer multiple
of 2⇡. To be able to gap out the edge states, and thereby ignore the · · · , it is su�cient to
break T symmetry, for example by applying a magnetic field. There are two di↵erent ways
of breaking T ; the 1+1d domain wall between these on the surface supports a chiral edge

mode.

The periodicity in ✓ ' ✓ + 2⇡ for the fermion TI can be understood from the ability to
deposit an (intrinsically 2+1 dimensional) integer quantum Hall system on the surface. This
changes the integer n in the surface Hall response (4). Following [24] we argued that a non-
fractionalized system of bosons in 2+1d must have a Hall response which is an even integer;
therefore a 3+1d boson TI has a ✓ parameter with period 4⇡.

M

E
lattice model

S[A,    ]ψ

S[A]

1/a

The simplest short-distance completion of this model is a single massive
Dirac fermion:

S[A, ] =

Z
d3
xdt ̄

�
i�µD

µ

�m� m̃�

5
�
 .

It is convenient to denote M ⌘ m+ im̃.

T : M ! M

?

6
A comment about notation: here and in many places below I refuse to assign names to dummy indices

when they are not required. The ·s indicate the presence of indices which need to be contracted. If you

must, imagine that I have given them names, but written them in a font which is too small to see.
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so time reversal demands real M . Integrating out the massive  produces an e↵ective action
for the background gauge field (and M) of the form above:

log

Z
[D ]eiS3+1[A, ] =

M

|M |

Z
d4
x

32⇡2
✏

abcd

F

ab

F

cd

+ · · ·

The sign of M determines the theta angle. An interface between the TI and vacuum is a
domain wall in M between a positive value and a negative value. Such a domain wall hosts
a 2+1d massless Dirac fermion [26]. (The T -breaking perturbation is just its mass, and
the chiral edge mode in its mass domain wall has the same topology as the chiral fermion
zeromode in the core of a vortex [27].)

A further short-distance completion of this massive Dirac fermion (as in the figure) comes
from filling an integer number of bands with a nontrivial Chern-Simons invariant of the Berry
curvature [28, 29, 25].

Otherwise – in a clean system – there is an odd number of surface Dirac cones. They can
eat each other in pairs under allowed smooth deformations, so let’s talk about the case with
just one. What is this Dirac cone? The right way to contextualize it is: The Dirac cone is
the critical theory arising at the transition between the two ways of breaking the protecting
time-reversal symmetry (the two signs of the magnetic field, and hence the sign of the 2+1d
mass, which would gap out the Dirac cone). This is a critical theory of a 2+1d free fermion
integer quantum Hall plateau transition, where the Hall conductivity changes by e

2
/h. And

indeed that’s what’s happening as the surface Hall conductivity changes between ±1
2
e

2

h

.

More generally, there are two important deformations of this statement.
(1) A surface chemical potential respects the symmetries, and replaces these cones with
surface Fermi surfaces.

(2) Without translation invariance, there are other possibilities for the surface theory: namely
other critical theories of the 2+1d IQH plateau transition. An important example is the
critical point accessed by the Chalker-Coddington network model. This is definitely di↵erent
from the Dirac cone, for example because it has correlation length critical exponent ' 7/4,
whereas for the Dirac cone it is 1. CHECK .

If T is preserved at the surface it is still possible to gap the edge states, but only if there is
surface topological order [10, 11, 12, 13, 14]. In these recent constructions of gapped edges
of fermion SPTs with surface topological order, what is the surface Hall response? It seems
like must be zero by T . On the other hand, how can the gapped, T -invariant edge cancel
out the bulk contribution in (3)?! This is where the magic (magic here means non on-site
symmetry realization on the surface) happens: T is represented in a really weird way on this
gapped edge, which allows a nonzero surface contribution to the Hall current.

What exactly do these all these possible surface theories have in common? What would we
have to change about one of them to force it to be separated by a bulk transition from the
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others?

3 Coupled-layer construction of SPT surface states

Let’s begin by building a 2+1d gapped bulk from 1+1d edges. This will give us some insight
about the transition between a nontrivial SPT and the trivial state. Then we’ll do 3+1d
bulk from gapped edges.

3.1 Coupled-layer construction for a fermion IQHE transition in
D = 2 + 1

Following [1], let’s make a model of a transition by which the Hall conductance of free
fermions changes by e

2

h

. (I say ‘a’ transition because there are others, for example in the
absence of translation invariance.)

S =

Z
dxd⌧

2NX
j=1

L
j

L
j

= c

†
j

(@
⌧

� is
j

@

x

) c
j| {z }

IQHE edge

� t

j

⇣
c

†
j+1cj + c

†
j

c

j+1

⌘
| {z }

interlayer hopping

t

j

=

(
t

e

, j even

t

o

, j odd
, s

j

= �(�1)j .

For each j we have one chiral ⌫ = 1 edge
mode, that is a D = 1 + 1 complex chiral
fermion. The t

j

term is some back-scattering
by which these layers hybridize and eat each
other.
For t

e

< t0, all layers are paired and there’s nothing left; �
xy

= 0.
For t

e

> t0, there are leftover chiral modes at the edges, �
xy

= e

2

h

. The transition occurs
at t

e

= t

o

, where we restore some extra translation symmetry. Taking a continuum limit
N ! 1, Na fixed we find a 2+1d Dirac fermion.
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3.2 Coupled-layer construction for a boson IQHE transition in D =
2 + 1

Still, following [1], now let’s do the same for a boson integer Hall plateau transition. The
⌫ = 2 boson IQHE edge is described by the SU(2)1 WZW model, with

S

⌫=2 edge[g] =
1

2�

Z
dxd⌧tr@

µ

g

�1
@

µ

g + iW2[g]

where W2 is the 2d WZW term (which is written as an integral over a 3-ball). Notice that
this model is actually not chiral; the only thing that’s chiral about it, in its role as the boson
⌫ = 2 edge theory, is the way in which it realizes the boson number current. That is, the
boson number current only has a right-moving part. This could be made explicit by coupling
to an external U(1) gauge field; pretend we did this.

Now we make another lasagna, i.e. couple alternating layers of this stu↵:

S =
2NX
j=1

⇣
S

⌫=2 edge[(�1)jg
j

]� t

j

trg†
j

g

j+1 + h.c.

⌘
(5)

The (�1)j a↵ects only the WZW
term, and is the analog of alter-
nating the chirality in the fermion
case. The hopping term here could
be written in terms of the double-
layer bosons as

trg†
j

g

j

'
X
I=1,2

b

†
j,I

b

j+1,I

– notice that it preserves the in-
dependent boson number conserva-
tion laws. This term is happy when
g

j

⇠ g

j+1.

Again for t

e

< t0, all layers
are paired and there’s nothing left;
�

xy

= 0.
For t

e

> t0, there are leftover chiral modes at the edges, �
xy

= 2 e

2

h

. The continuum limit in
these two cases is

S

⌫= ✓

⇡

[g] =
1

2

Z
d2
xd⌧tr@

µ

g

†
@

µ

g + i✓H
✓

[g] (6)

with ✓ = 0, 2⇡ respectively.

At t
e

= t

o

, the continuum limit gives [30]

S�⌫ = 2[g] =
1

2

Z
d2
xd⌧tr@

µ

g

†
@

µ

g + i⇡H
✓

[g] . (7)
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Here the object

H
✓

[g] ⌘ 1

6⌦3

Z
d3
xtrg�1dg ^ g

�1dg ^ g

�1dg

represents ⇡3(SU(2) ⇠ S

3) = Z. Check my numerical prefactor; it should count the number
of times the euclidean spacetime (we assume that g(1) = 1 so that it is topologically S

3)
wraps the target space SU(2) ⇠ S

3. ⌦
n

is the n-volume of the unit n-sphere.

Claim: this field theory, with ✓ = ⇡, has no trivial gapped state. It is either gapless or
has a degenerate groundstate, as in the conclusion of the Lieb-Schulz-Mattis theorem. We’ll
discuss an instructive argument for this conclusion in section 4.

A useful historical question: Why were Matthew Fisher and Senthil [30] studying this
construction in 2005? The answer is that they were looking for field theories with the
features in the previous claim. More specifically, they were trying to find a representation
of the deconfined quantum critical theory at the Neel-VBS transition (i.e. the continuous
phase transition between a 2+1d Neel state and the valence bond solid (VBS) state of an
antiferromagnet) which treated the Neel and VBS order on a more equal footing. Such a
more equal footing is manifest in D = 1+1 via the symmetry enhancement of the the SU(2)1
WZW model.

Further claim [30]: at ✓ = ⇡, this model is dual to a non-compact CP1 model, famous from
the study of the Neel-VBS deconfined quantum critical point.

Notice that so far we have preserved SU(2)
L

⇥ SU(2)
R

� U(1)1 ⇥ U(1)2 (and also the Z2

symmetry which interchanges the two layers of bosons 1 $ 2). For purposes of making
SPTs protected only by U(1) (and maybe ZT

2 ) we should allow tunneling between the layers:
b

j,1 ! b

j+1,2.

3.3 Consolidation: iterative scheme

We can now extract an iterative scheme for constructing SPT states. Suppose we are given
an SPT state in D + 1 dimensions, protected by, say, a Z2 symmetry (say time reversal).
Then we can destroy the state by breaking T in two di↵erent ways. For example, we can
(and already did in §1.2) make spin chains by the same kind of coupled-layer construction,
where now each layer is just a single spin-1

2
. In this way the edge theory in D dimensions

can be used to make (by coupling alternating layers) an SPT state in D + 1 dimensions.

How to make the recursion step of the iterative scheme? We need to know the edge theory
for the next higher dimension. The edge theory of a D + 2 dimensional SPT can be made
from the critical theory separating the D + 1 dimensional SPT from the trivial state. The
example with the spin-1

2
s already shows this: we can break ZT

2 and SU(2) by a Zeeman field

Hspin = ~

h · ~S; the critical theory is at ~h = 0, a free spin-1
2
!
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Repeating this to get from a D = 1 + 1 edge to a D = 2 + 1 SPT, we couple layers of the
SU(2)1 WZW model to get an O(3) NLSM with a topological term at ✓ = 2⇡, describing
the boson ⌫ = 2 IQH state. The critical theory separating this from the ⌫ = 0 trivial state
is the O(3) NLSM at ✓ = ⇡.

A question you should ask at this point is: what’s di↵erent about the D + 1-dimensional
critical theory (e.g. the SU(2)1 WZW model) when it arises as a critical point between D+1-
dimensional SPTs (in the example above, the trivial and nontrivial SO(3) chains) as from
when it arises on the surface of the D+2-dimensional SPT via a coupled-layer construction?
In general, the answer is not clear to me. In the example above, the di↵erence is merely
the way the U(1) symmetry is realized. An intrinsically 1 + 1-dimensional realization of the
SU(2)1 WZW model cannot preserve the chiral U(1) symmetry at the lattice scale – it is an
emergent symmetry.

In the case of the spin-1
2
at the surface of the SO(3) chain, the crucial thing is that the spin-

1
2
is a projective representation of SO(3) (i.e. it acquires a minus sign under a 2⇡ rotation).

Exercises: Majorana lasagna

1. Apply the coupled-layer construction beginning with a single Majorana mode as the
D = 0 + 1 edge state to get a D = 1 + 1 SPT state. (The answer is here [31].)

2. [Warning: spoilers for the previous problem!] Do it again using the critical limit of
the model above, that is, a massless 1+1d Majorana fermion. What 2+1d free-fermion
SPT state do you make this way?7

4 Unkillable edge states

The key ingredient in the above discussion was the unkillability of the D = 1 + 1 SU(2)1
WZW model (while preserving the SU(2) symmetry). Here we review an argument showing
that the D = 2+1 SO(4) sigma model with ⇥ = ⇡ shares this Bruce-Willis-like feature [32].

Practice run in D = 1 + 1: First we run the argument for the previous example: Con-
sider the D = 1 + 1 O(3) NLSM in imaginary time. We already know that this system
(for various ✓) arises as in continuum limits of spin chains to which the Lieb-Schulz-Mattis
theorem applies; here we discuss an argument for its conclusion which proceeds directly in
the continuum.

7

(Answer:ap+ipsuperconductor.)
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1. At ✓ 2 2⇡Z, the model on a space without boundary has a gap, and a non-degenerate
groundstate.

2. Put the system on a spatial interval, I ⌘ {x 2 [0, L]}. When ✓ = 0, there is still
nothing. When ✓ = 2⇡, the ✓ term

✓

4⇡

Z
✏

abc

n

adnb ^ dnc|
✓=2⇡ = W1

check factors is a O(3) 0+1d WZW term (with level 1) for the boundary Neel vector.
This is so simple it’s tricky: in the usual construction of the WZW term, we introduce a
fictitious extra dimension and write the thing as a total derivative (here ✏

abc

n

adnb^dnc)
integrated over that extra dimension. Here that extra dimension just happens to be
the actual bulk space dimension! So this is a D = 0 + 1 particle on S

2 with a WZW
term at level k = 1; that gives k + 1 = 2 states (for a reminder, see Physics 215C
lectures, §5.2).

3. Now what happens to this system on the interval as we slowly tune ✓ from 2⇡ to 0?
There a symmetry that’s restored at ✓ 2 2⇡Z acting by ~n ! �~n (and also ZT

2 ), but
even for ✓ = 2⇡�✏, we can’t kill the edge states because we haven’t broken SU(2). The
only way we can get rid of them – while preserving the SU(2) – is if we add degrees
of freedom, someone for them to pair up with. This can only happen if there is a bulk
transition. Another perspective on this unkillability is that the coe�cient of the WZW
term is quantized – you can’t have a spin which isn’t a half-integer. So for ✓ near 2⇡,
we must flow back to the model at ✓ = 2⇡.

4. There are two possibilities for the bulk transition, as usual: either it is continuous or
it is not. The two possibilities are exemplified by the two figures in 1. Notice that by
the action of time reversal

Physics(✓) = Physics(2⇡ � ✓)

so if the phase transition is not at ✓ = ⇡, there must be two transitions. Ockham
(following Kramers and Wannier [33]) suggests that the transition is at ✓ = ⇡.

In the first scenario, the edge spin delocalizes from the edge at ✓ = ⇡, where it can
join the continuum bulk critical theory at ✓ = ⇡. In the second scenario, the bulk has
a two-fold-degenerate groundstate at ✓ = ⇡ associated with the level-crossing.

So we arrive at the conclusion of the Lieb-Schulz-Mattis theorem about the model at
✓ = ⇡: either it is critical or it has a degenerate groundstate.

The phase diagrams associated to the two cases in D = 1 + 1 are:
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Figure 1: The two possibilities for the behavior of the bulk spectrum during the bulk
transition between ✓ = 0 and ✓ = 2⇡.

In the figure at right, the end of the flow at ✓ = ⇡ is a gapped state with two-fold degenerate
groundstate.

Notice that both kinds of transitions are possible between ✓ = 2⇡ and ✓ = 0, even in
D = 1 + 1. Which is edge phase realized in a given model depends on :

• The bulk Hamiltonian within the SPT phase. In the spin chain case, we may add
farther-neighbor terms in the spin hamiltonian. For example, by adding next-nearest-
neighbor Heisenberg interactions with coe�cient J2, we may reach the Majumdar-
Ghosh point at J2 = 1

2
J1. This model is exactly solvable and has two fully-dimerized

groundstates related by translation invariance, which is thus spontaneously broken.

• Is there translation invariance? Alternating J

e

/o terms (doubling the unit cell) change
✓ away from ✓ = ⇡ – recall the coupled layer argument. If there is no translation
invariance at all (recall that for most of the states we discuss translations are not part
of the protecting symmetry), the edge physics can be very di↵erent.
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Figure 2: Each shaded site hosts four spin-1
2
s. The AKLT state in bulk is the completely

spin- and translation-symmetric state made by forming singlets along each bond.

• How do we terminate the lattice? Staircase? Armchair? Elephant? These are names
for terminations of various lattices (OK I made up the last one). A dramatic example
pointed out by Dan Arovas is in the square lattice AKLT model (that means four
spin-1

2
s at each site) it makes a big di↵erence whether the normal to the edge is along

a lattice vector or not:

• From the continuum point of view, the previous choice is related to the choice of
boundary conditions in the sigma model, i.e. to what n̂ does at the boundary.

The argument in D = 2+1: Now we follow the analogous steps for the D = 2+1 NLSM
on S

3.

1. Again for ✓ 2 2⇡Z, the model has a gapped, non-degenerate groundstate on a space
without boundary.

2. The analog of the interval is the cylinder, S1 ⇥ I. Let x 2 [0, L] and y ' y + 2⇡R.
We are going to consider a regime where L,R � ⇠, the bulk correlation length.

At x = 0, L, we have a 1+1d O(4) NLSM with a WZW term W2[~n] at k = ✓

2⇡
. For

✓ = 0, this flows to the strongly coupled gapped fixed point. For ✓ = 2⇡ this flows to
the SU(2)1 WZW fixed point we’ve already heard so much about. For ✓ = 2⇡n, n > 1
is there a screening phenomenon similar to the one for spin chains? It is possible, since
the number of degrees of freedom of the fixed point theory grows with k.

3. Now tune ✓ from 2⇡ to 0. The emergent symmetry O(4) ' SU(2)
L

⇥SU(2)
R

protects the
edge CFT – there are no relevant perturbations of the SU(2)

k

CFT which preserve it.
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To kill the edge CFT, we must couple left- and right-movers, and break the symmetry
to the diagonal SU(2).

Since the bulk preserves the O(4) symmetry, killing the edge (which must happen
somewhere as ✓ goes from 2⇡ to 0) requires a bulk transition.

4. Again this transition may be continuous or not, producing the same two scenarios for
the low-lying bulk spectrum as in Fig. 1. The corresponding phase diagrams are:

There is an alternative argument for this conclusion in [32], which proceeds by considering
the strong-coupling limit of the sigma model on S

2 for various ✓. This produces a quantum
mechanical system similar to a particle on a ring (where the ✓-term is just the winding
number

R
d⌧@

⌧

�); when ✓ = ⇡ there is a degeneracy.

5 Ways of slicing the path integral

In the path integral on a closed spacetime manifold, the ✓ term multiplies an integer and
therefore its value only matters mod 2⇡. The total value of ✓ does matter if the path integral
is on a spacetime with boundary, either in space or time (a point which has been emphasized
by Cenke Xu). A boundary of space means a real boundary; a boundary in time in the path
integral means that the path integral is a functional of the boundary data – it computes a
wavefunction, in ‘position space’. For quantum mechanics of a single variable q(t), this is
manifested in the Feynman-Kac formula

 (q) =

Z
q(t0)=q

Y
t2(�1,t0)

dq(t)e�Seuclidean[q]
.

For a field theory, ‘position-space wavefunction’ means a wavefunctional  [�(x)], in

| i =
Z

[D�(x)] [�(x)]|�(x)i

where x labels spatial positions, and |�(x)i are coherent states for the field operator �̂(x).
Which wavefunction? If the path integral is over a large euclidean time T before reaching
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the boundary, this is a groundstate wavefunction, since the euclidean time propagator e�TH

is a (un-normalized) projector onto lowest-energy states.

An important guiding concept in the study of interesting gapped states is that it is the
same stu↵ living at a spatial boundary (edge modes) as at a temporal boundary (the wave-
function) [34, 35]. This perspective first arose (I think) in the context of quantum Hall states
where famously [34] one can write groundstate and several-quasiparticle wavefunctions as
correlation functions of certain operators in a 1+1d CFT, which is the same CFT that arises
at a spatial edge. Why should this be true? It’s because the bulk can be described by a
path integral for a Chern-Simons gauge theory which has a certain WZW model living at
its boundaries, wherever they are. For a spatial boundary, it produces a copy of that CFT
at the boundary (roughly the group-valued CFT field g is related to the CS gauge field by
A = g

�1dg).

For a temporal boundary, the path integral expression for the wavefunctional (with some
Wilson line insertions related to quasiparticles) takes the form

 [g(x)] =

Z
A(t0,x)=g

�1dg

e

iS[A]
W [C] = h

Y
↵

V

↵

(x
↵

)i
WZW

. (8)

A too-brief explanation of this rich formula: the wilson line insertion is W [C] = tr
R

Pe

i
H
C

A

where R is a representation of the gauge group G and P is path ordering. In (8), x
↵

are the
locations where the curve C intersects the fixed-t = t0 surface, and V

↵

are some operators in
the CFT the appropriate representations R of G.

For spin chains, this point of view is used in [36] to construct spin chains whose continuum
limit is the SU(2)

k

WZW model with k > 1.

For 3+1d boson SPT states, the analogous bulk EFT is, instead of CS gauge theory, some
weird BF theory or strongly-coupled sigma model, both of which we’ll discuss below. At
a spatial edge, we have some vortex excitations in D = 2 + 1. Correspondingly, the bulk
wavefunctions will turn out to have a nice representation in a basis of states labelled by
vortex loop configurations in D = 3 + 1.
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6 (Neel) sigma model description of SPT wavefunc-

tions

6.1 D = 1 + 1 Haldane chain

Take D = 1 + 1, G = SO(3), and let’s study a field variable which is a 3-component unit
vector n̂ 2 S

2. The fact that ⇡2(S2) = Z will play an important role. Think of this ~n as
arising from coherent-state quantization of a spin chain. So take the (imaginary-time) action
to be

S =

Z
d⌧dx

✓
1

g

2
@

µ

n̂ · @µn̂+ i
✓

4⇡
✏

abc

n

a

@

⌧

n

b

@

x

n

c

◆
.

We will focus on ✓ 2 2⇡Z. Recall from 1.2 that in this case the model has a gap. We would
like to understand what is di↵erent between ✓ = 0 and ✓ = 2⇡.

Recall the role of the ✓ term: on a closed spacetime manifold M

D

Z

✓

(M
D

) ⌘
Z
[Dn]e�S =

X
n2⇡2(S2)

e

i✓n
Z

n

and Z

✓

(M
D

) = Z

✓+2⇡(MD

). In particular, we can take M

D

= S

1 ⇥ N

D�1 to compute the
partition function on any spatial manifold N

D�1. This means the bulk spectrum is periodic
in ✓ with period 2⇡.

In contrast to the case of a closed manifold, if we compute the path integral on an (infinite)
cylinder (i.e. with two boundaries, at ⌧ = ±1),Z

n̂(x, ⌧ = 1) = n̂(x)
n̂(x, ⌧ = �1) = n̂

0(x)

[Dn̂(x, ⌧)]e�S[n(x,⌧)] = hn̂(x)|0ih0|n̂0(x)i (9)

then ✓ does matter, not just mod 2⇡. Notice that in expressions for functionals like S[n(x, ⌧)]
I am writing the arguments of the function n to emphasize whether it is a function at fixed
euclidean time or not. The fact that the theta term is a total derivative i✓H = i✓

R
@M

D

w

means that the euclidean action here is

S[n(x, ⌧)] =

Z
M

D

d⌧dx
1

g

2
@

µ

n̂ · @µn̂+ i✓

Z
dx (w(n(x))� w(n0(x))) .

The ✓ term only depends on the boundary values, and comes out of the integral in (16).

If we also take g ! 1 there is nothing left in the integral and we can factorize the expression
(16) to determine:

|0i
✓=0 /

Z
[Dn̂(x)]|n̂(x)i =

Y
x

|` = 0i
x
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is a product state; on the far RHS here we have a product of local singlets:
R
dn̂|n̂i = |` = 0i

at each site. Here we used hn̂(x)|n̂0(x)i = �[n� n

0].

|0i
✓=2⇡ /

Z
[Dn̂(x)]ei

✓

2⇡

R
dxw(n̂(x))|n̂(x)i

Here
R
dxw(n̂(x)) = W1[n̂] is the D = 1 + 1 WZW term; the role of the usually-fictitious

extra dimension in writing this WZW term is now being played by the real euclidean time.

But the groundstate of the spin-one chain is the AKLT wavefunction, which we can denote

graphically by: |AKLTi = This leads us to the conclusion that
we can write the AKLT wavefunction (or at least a wavefunction in the same phase) in the
coherent state basis as

|AKLTi =
Z
[D~n(x)]eiW[~n]|~n(x)i . (10)

6.2 D = 2 + 1 G = Z
2

boson SPT

The same logic can be used to produce a wavefunction for the new Ising paramagnet con-
structed in [15]. That paper provides an exactly solvable lattice model built on the Hilbert
space

Hising = ⌦sites s of 2d latticespan{|↵s

= ±1i} = span{|Di, D 2 {domain wall configurations}}

with a Z2-symmetric hamiltonian. The Z2 acts by ↵s

! �↵
s

, 8s. The usual Ising paramagnet
can be described in this basis as a uniform superposition of domain walls

| 0i =
X
D

|Di .

The Levin-Gu state is
| 1i =

X
D

(�1)ND |Di

where N

D

is the number of domain walls in the configuration D. [15] show that if we gauge
the protecting Z2 symmetry, we get distinct topologically ordered states in the two cases.
From  1, we get a system where the visons (endpoints of the domain walls, which are the
same as ⇡ flux insertions of the Z2 gauge field) are semions.

[2] provide an e↵ective field theory perspective on this state starting from the SO(4) NLSM
in D = 2 + 1.
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1. Take the action

S[~� 2 S

3] =

Z
d⌧d2

x

✓
1

g

2
@

µ

~

� · @µ~�+ i✓H[�]

◆
Again

R
M3, closed

H[�] 2 Z for smooth configurations �(x, ⌧). More precisely

H ⌘ 1

2⇡2
✏

abcd

�

a

@

⌧

�

b

@

x

�

c

@

y

�

d =
1

12⇡2
✏

abcd

�

ad�bd�cd�d

represents ⇡3(S3), and is a total derivative H = dW2.

2. Consider ✓ = 2⇡. What about other values of ✓ ? T is not part of the protecting
group, and ~�! �~� is a symmetry for all ✓. But ✓ 2 2⇡Z will be preferred below. We
can still ask about ✓ = 2⇡k, with k > 1.

By the same logic as in the previous subsection, the groundstate wavefunctional in the
strong-coupling limit is

| i
✓

g!1⇡
Z

[D~�(x)]|~�(x)iei ✓

2⇡W2[~�(x)]
. (11)

The WZW term here has the identical form to the theta term in the action, but now it
is interpreted as a functional of the boundary field configuration. Again the euclidean
time direction is playing the role of the fictitious extra dimension.

3. Break the artifical SO(4) ! SO(3)⇥Z2 by adding some potential terms in the NLSM
action. More specifically, decompose the coordinates on S

3 as �a = (�0 cos↵, n̂ sin↵)
with �0 = ±1, n̂ · n̂ = 1, and choose the potential to be minimized when �0 = 0. Recall
that for a single harmonic oscillator with S =

R
dt
�
1
2
q̇

2 � V (q(t))
�
, the potential term

V (q) = 1
2
!

2
q

2 changes the groundstate wavefunction by  (q) ⇠ e

�!q2 (beware my fac-
tors of two). Adding this potential V (�0) ⇠ m

2
�

2
0(x, t) then weights the configurations

with nonzero �0 with a factor of e�m

R
space dx�(x) which suppresses their contribution; we

can then take m ! 1 and keep only configurations with �0 = 0.

It is a general fact that restricting a WZW term for maps to a sphere to field configu-
rations on the equator gives a theta term:

W
d

[�̂|equator = (0, n̂)] =

Z
H

d

[n̂] .

An explicit example is:

W1[~n 2 S

2] =

Z 1

0

du

Z
�

0

dt✏µ⌫✏
abc

n

a

@

µ

n

b

@

⌫

n

c =

Z
�

0

dt
1

2
(1� cos ✓(t)) @

t

'(t) .

Here ~n(u = 0, t) = (0, 0, 1),~n(u = 1, t) = ~n(t) and ~n(t + �) = ~n(t). The polar
coordinates are defined (as in the figure) by ~n = (sin ✓ cos', sin ✓ sin', cos ✓).

27



If we fix to some particular latitude ✓(t) = ✓0 (such as the equator at ✓0 = ⇡/2) we get
the D = 0 + 1 theta term:

W1[~n|✓=✓0 ] =
1� cos ✓0

2

Z
�

0

dt@
t

�| {z }
22⇡Z=winding # around latitude

=
1� cos ✓0

2

Z
dtH1['] .

More explicitly for the case at hand,

W2[�̂ = (0, n̂)] =
1

16⇡

Z
d2
x✏

abc

✏

µ⌫

n

a

@

µ

n

b

@

⌫

n

c = ⇡

Z
H2[n̂] = ⇡N

s

.

check factors Notice that now n̂ ! �n̂ symmetry (the symmetry of the actual spin
system we want to keep) requires ✓ 2 ⇡Z. In the previous expression N

s

is the skyrmion
number of the configuration ~n. A skyrmion is a configuration of an S

n-valued field on Rn

which looks like this for n = 2: It ties each point
in space (labelled by its image under stereographic projection) to the corresponding
point in the target sphere.

Claim: if we localize �0 = 0, the wavefunction (11) becomes

| i
✓

=

Z
[D~n(x)]|~n(x)i ei ✓

2⇡

R
space H2[~n(x)]| {z }
=(�1)Ns

4. Now break the remaining SO(3)⇥Z2 ! SO(2)⇥Z2 by a potential which adds a mass
for nx

, n

y, favoring n

z = ±1. As you can see from the figure, a skyrmion configuration
is smooshed into a domain wall of nz surrounding the location of the skyrmion. The
wavefunction becomes

| 
✓=2⇡i =

X
{nz}

(�1)ND |{nz}i

where N

D

is the number of domain walls in the configuration of spins {nz}.
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5. Finally, breaking the remaining SO(2) is innocuous and doesn’t change the wavefunc-
tion for the n

z configurations.

A label on this state: In the case of SPTs where the protecting group contains a
U(1) factor, we can often label distinct states by a discrete label associated with its EM
response, its quantized Hall response in D = 2 + 1 (if T is not preserved) or its quantized
magnetoelectric response ✓

2⇡
in D+3+1. This gives a proof that a state is not adiabatically

connected to the trivial one without having to think about every possible deformation,
including all possible interactions. For this state protected by just Z2 we can’t do this.
Instead, following [15], we can find such a label by asking what happens if we gauge the Z2.

It is possible to see directly from the sigma model field theory that if we gauge the Z2 the
visons will be semions [2]. The method to study discrete gauge theory in the continuum is
to gauge a larger continuous group and Higgs it down to Z2.

To choose this larger continuous group, reorganize the field variables into an SU(2) matrix:

g = �

01 + ~

� · ~�i 2 SU(2)

(it’s in SU(2) since det g = det

✓
�

0 + �

3
�

1 � i�2

�

1 + i�2
�

0 � �

3

◆
= �

2
0 + ~

�

2 = 1.) in terms of which the

action is

S[g] =

Z
d2
xdt

✓
1

g

2
trg�1

@

µ

gg�1
@

µg+
✓

12⇡2
✏

···trg�1
@·gg�1

@·gg�1
@·g
◆

i.e. it is a ‘principal chiral model for SU(2)’. check sphere factor The O(4) ' SU(2)
L

⇥SU(2)
R

symmetry acts on g by
g 7! L

†gR, L,R 2 SU(2) .

Let’s gauge the U(1)
L

⇥U(1)
R

subgroup generated by �z⌦1 and 1⌦�z; this is accomplished
by replacing the derivatives in the action by

@

µ

g @

µ

g+ ia
µ

�zg� ib
µ

g�z (12)

where a, b are two new gauge fields. Notice that the order of g and �z matters. We’ll give
a, b a mass by adding Higgs fields.

Claim:

log

Z
[Dg]eiS[g,a,b] = i

Z
d2
xdt

2

4⇡
(✏···a·@·a· � ✏

···
b·@·b·) + ... (13)

where ... is terms with more derivatives or more gauge fields. We knew this from §3.2 and in
particular (6) – the coupling of each of a and b to g in (12) is exactly the way the external
gauge field couples to the sigma model variable of the ⌫ = ±2 boson IQHE state respectively,
and (13) is the precisely the statement that this sigma model has ⌫ = ±2 Hall response.

A level k CS term attaches flux 2⇡
k

to a unit electric charge. Because of the resulting
Bohm-Aharonov phase, this changes the statistics angle of that charge by ⇡/k. This means
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that the ⇡-flux of the a, b gauge fields have ±⇡/2 statistics – they are semions. Breaking

U(1)⇥ U(1)
h�i6=0! Z2 (where � has charge (2,�2)) doesn’t change this.

comment about edge states from the sigma model description

6.3 D = 3 + 1 Boson SPTs from Neel sigma models

In the previous construction, we (or rather [2]) added quite a bit of artificial symmetry to
find a useful starting point. We (or rather [24]) did the same kind of thing in the discussion
of the boson ⌫ = 2 IQHE SPT. Here we’ll enlarge that boson symmetry even further, to
SO(5) [2] and consider the D = 3 + 1 NLSM with field variable n̂ 2 S

4, which has a
fake SO(5) � U(1) ⇥ U(1) symmetry. This is a device to make boson SPTs protected by
U(1)⇥ZT

2 or U(1)⇥ZT
2 . We could have motivated by continuing the iterative coupled layer

constructions one step further to D = 3 + 1, though I don’t know how to get all of SO(5)
this way. Perhaps SC Zhang does.

The action will be

S[n̂] =

Z
d3
x

✓
1

g

2
@

µ

n̂ · @µn̂+ i
✓

⌦4

✏·····n·dn·dn·dn·dn·
◆

(14)

where ⌦4 = 8⇡2

3
is the volume of the 4-sphere. We

will focus on ✓ = 2⇡. The phase diagram is the same
as for ✓ = 0 (right).

The wavefunction at strong coupling is

| i
✓

g!1⇡
Z
[D~n(x)]ei✓W3[n̂(x)]|n̂(x)i,

where again W [n] looks the same as the theta term in (14) but interpreted as a functional
of the boundary value, with ⌧ as the fake extra dimension.

As before we reduce the symmetry in steps. First
SO(5) ! SO(4)⇥ Z2 by

~n = (sin↵�̂, cos↵�0)

with �̂ 2 S

3, �̂2 = 1, and �0 = ±1. Add a potential
to set ↵ = ⇡/2, so �0 = 0. Other decompositions may
be interesting, too.

Next let’s introduce the boson variables:

b1 ⌘ �1 + i�2, b2 ⌘ �3 + i�4.
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The U(1) that we wish to preserve acts by b

I

! e

i✓
b

I

, I = 1, 2. There are two possibilities
for the ZT

2 symmetry. Both act by �0 ! ��0 and
p
�1 ! �

p
�1. They act di↵erently on

the bosons:
Z(1)

2 : b
I

! b

I

, Z(2)
2 : b

I

! �b

?

I

.

The former commutes with the U(1) like XY-symmetric spin systems, while the former is
the relevant realization in real boson systems, like 4He.

The W term restricted to the equator �0 = 0 becomes

✓

2⇡
W3[n̂ = (�̂, 0)] =

✓

24⇡3
✏····

Z
space

�

· ^ d�· ^ d�· ^ d�·

When � = 2⇡, this is
W3 = ⇡N

s

where N

s

2 ⇡3(S3) is the skymion number of the map ~

� : space ! S

3.

Claim: either choice for ZT
2 enforces ✓ 2 ⇡Z, and hence reality of the wavefunction.

Penultimately, break SO(4) ! U(1)1 ⇥ U(1)2, by adding a potential so that the field
configurations are maps from space to the two-torus U(1)1 ⇥U(1)2. We can label each such
map by a configuration of two kinds of vortex loops. These vortex loops are just the loci
where each boson vanishes:

V

I

⌘ {x 2 space|b
I

(x) = 0}.
Since the boson is complex, b1(x) = 0 is two real conditions on the three spatial coordinates
x

i, so this locus is one-dimensional, i.e. a curve. And directly from the definition, these
level-sets are closed loops.

And since we are already assuming that ~� 6= 0 for energetic reasons, this means that b1,2
don’t simultaneously vanish. So the linking number of a configuration of the two kinds of
loops is well-defined.

Finally, break U(1)1 ⇥ U(1)2 ! U(1)diag. The potential which does this makes the two
kinds of vortex loops sit next too each other (but not too close). They can still wind around

each other: So we can think of the common vortex loop of the two
kinds of bosons as a ribbon, stretching between the two kinds of loop. This assumes that the
binding length for the two kinds of loops is smaller than the allowed separation of loops of
the same species.

Claim: N
s

[b1, b2] is the total linking number L12(V1, V2) of the two species of vortex loops
in the associated loop configuration. This means that

| i
✓=2⇡ =

X
{V1,V2}

(�1)L12(V1,V2)|V1, V2i (15)
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Figure 3: The end of the ribbon is a fermion, from [2]. In the first step, we rotate the
red string around the blue one. The squiggles mean that the states associated with these
configurations have the same amplitude in the groundstate, according to (17).

Exercise: Notice that the wavefunction in (17) is not positive. Explain how this is
consistent with the theorem (due to Feynman?) that the groundstate wavefunction of a
collection of bosons, with time-reversal symmetry, is positive definite.

As a consequence [2], in the presence of a boundary, an end of the vortex ribbon behave as
a fermion. This statement is not precise because the surface may be gapless.

The other D = 3 + 1 boson SPT: Start from the same SO(5) NLSM, with ✓ = 2⇡. But
we will embed the real degrees of freedom di↵erently into the ~n fields.

~n = (Reb, Imb,N

x

, N

y

, N

z

)

ZT
2 :

p
�1 ! �

p
�1, b ! �b

?

,

~

N ! � ~

N

In the core of a vortex line of b, i.e. a set of points where b = 0, we have ~

N · ~N = �

2 = 1
– inside the vortex line is an ~

N -field, a map from the vortex line into S

2. Each connected
component of the vortex line is a circle, and living on it is a D = 1 + 1 O(3) NSLM; the
theta term of the SO(5) model reduces to

2⇡

Z
{b=0}

dtdxH[� = (0, 0,~n)]

a D = 1 + 1 theta term, with ✓ = 2⇡. This is the EFT of a Haldane chain living in the
vortex line core.

Now what happens if one of these vortex lines terminates at a boundary of the system? It
means that the Haldane chain has a boundary, which means there is a spin-1

2
living at the
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end: the surface vortex is a spin-1
2
two-state system. Before we break the fack SO(3) acting

on ~

N this is a representation of SO(3). But breaking the fake SO(3) symmetry is innocuous,
since the Haldane chain is protected by ZT

2 , and the degeneracy of the edge state is, too – it
is a Kramers’ doublet.

6.4 Entanglement structure

The ✓ term a↵ects the wavefunctional, and hence the manner in which the (nearby!) bulk
degrees of freedom are (short-ranged-) entangled with each other. This means that fake
boundaries can also detect a ✓-dependence. What I mean by this is: the reduced density
matrix in the groundstate associated with tracing out some region of the space A

⇢
A

⌘ trH
Ā

|✓ih✓|

knows about ✓. On general grounds, any density matrix can be written like a Boltzmann
distribution

⇢
A

=
1

Z

e

�K

with K Hermitian and Z determined by normalization tr⇢
A

= 1. In this context K is called
the entanglement hamiltonian (sometimes ‘modular hamiltonian’). For gapped groundstates,
very general arguments [37] (and also more specific arguments [38, 35]) relate the spectrum of
K to the spectrum of actual edge states were the boundary of region A an actual boundary.
(This connection was observed in quantum Hall states in [39].)

An interesting question raised by Zhoushen Huang is: can we use these strong-coupling
sigma model wavefunctions to study the entanglement in the SPT groundstate in this limit?
A given bulk phase hosts a large boundary phase diagram. Which edge phase will we get
for the entanglement Hamiltonian? In the sigma model on a space with boundary we get
to choose boundary conditions on the ~n-field. This choice is absent for the entanglement
calculation, both on the lattice and in the continuum. On the other hand, the choice of
bulk Hamiltonian within the phase will a↵ect both the edge spectrum and the entangle-
ment spectrum. The strong-coupling limit of the sigma model is a particular choice of bulk
Hamiltonian (actually, zero).

7 BF theory

The bulk EFT for D = 3 + 1 boson TIs has a description in terms of BF theory. This is a
topological field theory where the dofs are a gauge field a and a 2-form potential B. For two
species of bosons, there are two copies of each I = 1, 2 and

2⇡S[B,A] =
X
I

✏

···· 1
2⇡

B

I

··@·a
I

· + #

X
IJ

K

IJ

4⇡
@·aI· @·a

J

· ✏
····
.
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Note that the theta angle # here is not the same as the ✓ in the magnetoelectric resonse.

Whence these variables? Each copy is the 3+1d version of the charge-vortex duality, where
for each boson current

j

I=1,2
µ

=
1

2⇡
✏

µ···@·BI

··

which has @·jI· = 0 as long as B is single-valued. B has to be a two form to soak up the
indices in this equation. The magnetic field lines of a

µ

are the vortex lines of b
I

. If you like,
the point in life of B is to say that a is flat; that is, its equation of motion is:

0 =
�S

�B

= da

Similarly, the EoM of a says B is flat.

Focus on the case K = �x. One virtue of this e↵ective action is that it reproduces the EM
response. If we couple to an external U(1) gauge field A by

�L = A
µ

(jµ1 + j

µ

2 )

then

log

Z
[DaDB]eiS[a,B,A] =

Z
2#

16⇡2
dA ^ dA+ · · ·

that is, the magneto-electric response is ✓
EM

= 2#. So # = ⇡ will be a nontrivial boson TI.

What is the groundstate wavefunction? As before we can cut open the path integral to
find

 
#

[a(x), B(x)] =  
#=0[a(x), B(x)]| {z }

trivial Mott insulator

⇥ exp i
#

8⇡2

Z
space

a

I

· @·a
J

· ✏
···
K

IJ| {z }
K=�x

= i#2 (linking # of 2⇡ magnetic flux lines)

.

I no longer believe the preceding discussion. Rather:

Choose A0 = 0 gauge. Since A and B are conjugate variables, the analog of position space
here is | ~A(x)i. For the same reason, we can only specify BCs on one or the other:Z

~

A(x, ⌧ = 1) = ~

A(x)
~

A(x, ⌧ = �1) = ~

A

0(x)

[D ~

A(x, ⌧)DB(x, ⌧)]e�S[ ~A(x,⌧),B] = h ~A(x)|0ih0| ~A0(x)i (16)

Notice that in expressions for functionals like S[A(x, ⌧)] I am writing the arguments of the
function A to emphasize whether it is a function at fixed euclidean time or not. The fact
that the theta term is a total derivative

i✓H = i✓

Z
@M

D

w
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(more precisely i✓F ^ F = ci✓
R
@M

D

A ^ F )
means that the euclidean action here is

S[ ~A(x, ⌧)] =

Z
M

D

d⌧dx
1

4⇡
B ^ F + i✓

Z
dx (w(n(x))� w(n0(x))) .

The ✓ term only depends on the boundary values, and comes out of the integral in (16).

The integral over BI is Z
[DB]e�

1
4⇡

R
B

I^F I

= �[F I ].

The delta functional on the RHS here sets to zero the flux of the gauge field for points in
the interior of the cylinder.

After doing the integral over B, there is nothing left in the integral and we can factorize
the expression (16) to determine:

 [ ~A
I

(x)] = exp i
#

8⇡2

Z
space

A

I

· @·A
J

· ✏
···
K

IJ| {z }
K=�x

= i#2 (linking # of 2⇡ magnetic flux lines)

(17)

The conclusion is the same.

So again the figure above shows that the wavefunction of the end of the bound vortex lines
(why are they bound?) acquires an extra minus sign under a 2⇡ rotation.

The BF theory also knows about the edge states: the CS term at level 1 changes the
statistics of the charges at the boundary.

An early confusing paper [40] claims that a similar BF theory is an e↵ective topological
field theory for electronic topological insulators. This interesting claim requires further
development, especially with regard to the edge states.

8 Dual vortices

8.1 Charge-vortex duality

This is something that condensed matter theorists are supposed to know which I’ve had a
hard time learning from the literature. Some references are: [41, 42, 43, 44, 45, 46, 47].
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Consider a quantum system in D = 2 + 1 with a U(1) symmetry (a real symmetry, not a
gauge redundancy). For example, focus on a complex bose field b with action

S[b] =

Z
dtd2

x

⇣
b

†
⇣
i@

t

� ~r2 � µ

⌘
b� U(b†b)2

⌘
. (18)

By Noether’s theorem, the symmetry b ! e

i✓
b implies that the current

j

µ

= (j
t

,

~

j)
µ

= (b†b, ib†~rb+ h.c.)
µ

satisfies the continuity equation @µj
µ

= 0.

This system has two phases of interest here. In the ordered/broken/superfluid phase, where
the groundstate expectation value hbi = p

⇢0 spontaneously breaks the U(1) symmetry, the
goldstone boson ✓ in b ⌘ p

⇢0e
i✓ is massless

Se↵[✓] =
⇢0

2

Z ✓
✓̇

2 �
⇣
~r✓
⌘2◆

d2
xdt, j

µ

= ⇢0@✓ .

In the disordered/unbroken/Mott insulator phase, hbi = 0, and there is a mass gap. A dimen-
sionless parameter which interpolates between these phases is g = µ/U ; large g encourages
condensation of b.

We can ‘solve’ the continuity equation by writing

j

µ = ✏

µ··
@·a· (19)

where a· is a gauge potential. The time component of this equation says that the boson
density is represented by the magnetic flux of a. The spatial components relate the boson
charge current to the electric flux of a. The continuity equation for j is automatic – it is the
Bianchi identity for a – as long as a is single-valued. That is: as long as there is no magnetic
charge present. A term for this condition which is commonly used in the cond-mat literature
is: “a is non-compact.”

The relation (19) is the basic ingredient of the duality, but it is not a complete description:
in particular, how do we describe the boson itself in the dual variables? In the disordered
phase, adding a boson is a well-defined thing which costs a definite energy. The boson is
described by a localized clump of magnetic flux of a. Such a configuration is energetically
favored if a participates in a superconductor – i.e. if a is coupled to a condensate of a charged
field. The Meissner e↵ect will then ensure that its magnetic flux is bunched together. So this
suggests that we should introduce into the dual description a scalar field, call it �, minimally
coupled to the gauge field a:

S[b]! Sdual[a,�] .

And the disordered phase should be dual to a phase where h�i 6= 0, which gives a mass to
the gauge field by the Anderson-Higgs mechanism.

Who is �? More precisely, what is the identity in terms of the original bosons of the
particles it creates? When � is not condensed and its excitations are massive, the gauge
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field is massless. This the Coulomb phase of the Abelian Higgs model S[a,�]; at low energies,
it is just free electromagnetism in D = 2 + 1. These are the properties of the ordered phase
of b. (This aspect of the duality is explained in [48], §6.3.) The photon has one polarization
state in D = 2 + 1 and is dual to the goldstone boson. This is the content of (19) in the
ordered phase: ✏µ··@·a· = ⇢0@µ✓ or ?da = ⇢0d✓.

Condensing � gives a mass to the Goldstone boson whose masslessness is guaranteed by
the broken U(1) symmetry. Therefore � is a disorder operator: its excitations are vortices
in the bose condensate, which are gapped in the superfluid phase. The transition to the
insulating phase can be described as a condensation of these vortices.

I should mention that these statements can also be made more precise in a lattice model
whose continuum description is (18).

The vortices have relativistic kinetic terms, i.e. particle-hole
symmetry. This is the statement that in the ordered phase
of the time-reversal invariant bose system, a vortex and an
antivortex have the same energy. An argument for this claim is
the following. We may create vortices by rotating the sample,
as was done in the figure at right (from Martin Zwierlein).
With time-reversal symmetry, rotating the sample one way will
cost the same energy as rotating it the other way.

This means that the mass of the vortices m2
V

�†� is distinct
from the vortex chemical potential µ

V

⇢

V

= µ

V

i�†
@

t

�+ h.c.. The vortex mass2 maps under
the duality to the boson chemical potential. Taking it from positive to negative causes the
vortices to condense and disorder (restore) the U(1) symmetry.

To what does the vortex chemical potential map? It is a term which breaks time-reversal,
and which encourages the presence of vortices in the superfluid order. It’s an external
magnetic field for the bosons. (This also the same as putting the bosons into a rotating
frame.)
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To summarize, a useful dual description is the Abelian Higgs model

S[a,�] =

Z
d2
xdt

✓
�†
✓
(i@

t

� iA
t

� µ)2 +
⇣
~r+ ~

A

⌘2◆
�� 1

e

2
f

µ⌫

f

µ⌫ � V (�†�)
◆
.

We can parametrize V as
V = �

�
�†�� v

�2
– when v < 0, h�i = 0, � is massive and we are in the Coulomb phase. When v > 0 �
condenses and we are in the Anderson-Higgs phase.

I should mention that a fuller phase diagram for the
bosons also allows us to vary the kinetic terms (the
parameter t in the figure at right). This gives (even in
mean field theory) the famous picture at right, with
lobes of di↵erent Mott insulator states with di↵erent
(integer!) numbers of bosons per site (which I bor-
rowed from Roman Lutchyn). The description above
is valid near the boundary of one of the MI phases.
At the tips of the lobes are special points where the
bosons b themselves have particle-hole symmetry (i.e.
relativistic kinetic terms). For more on this diagram,
see e.g. the original reference [42] or chapter 9 of [49].

In the previous discussion I have been assuming that the vortices of b have unit charge under
a and are featureless bosons, i.e. do not carry any non-trivial quantum numbers under any
other symmetry. If e.g. the vortices have more-than-minimal charge under a, say charge q,
then condensing them leaves behind a Z

q

gauge theory and produces a state with topological
order. If the vortices carry some charge under some other symmetry (like lattice translations
or rotations) then condensing them breaks that symmetry. If the vortices are minimal-charge
fermions, then they can only condense in pairs, again leaving behind an unbroken Z2 gauge
theory.

8.2 Lattice bosons in D = 3 + 1

Now let’s talk about a description of bosons in D = 3+1 which includes the lattice structure.
More specifically, let’s think about a rotor description:

H = �t

X
hiji

cos (✓
i

� ✓

j

) + Un̂

2
i

.

Here n̂

i

is the deviation from the average number of bosons. You should think of b
i

⇠ e

i✓
i

and [n̂
i

, e

i✓
i ] = n

i

+ 1. Here [n̂
i

, ✓

j

] = i�
ij

. The rotor description is an approximation which
works if we don’t have occasion to notice that nothing stops n

i

from going negative.
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The disordered, Mott insulating phase h✓i = 0 occurs at t/U ⌧ 1. A wavefunction for it is

|MIi
t=1 =

Y
i

| n

i

= 0| {z }
no extra bosons

i /
Y
i

Z 2⇡

0

d✓
i

|{✓
i

}i

This is a trivial product state.

Perturbation theory in t/U gives

|MIi
K⌘U/t⌧1 '

Y
i

Z 2⇡

0

d✓
i

e

�K

P
ij

cos(✓
i

�✓
j

)
Y
i

|{✓
i

}i

Here we are using a basis of states for the D = 3 + 1 quantum XY model which are lattice
configurations of the D = 3 + 1 classical lattice XY model, {✓

i

}. The coe�cient of a given
basis vector is the associated Boltzmann weight.

Instead, we could use a basis labelled by the dual variables [50, 51, 52, 53, 41] – configura-
tions of vortex loops { ~J, ~A}. This is the duality described in the previous subsection but in
D = 3 + 0 instead of D = 2 + 1, and on the lattice. Here ~

J is an integer living on sites of
the dual lattice, labelling the number of vortex loops of ✓ entering from each direction; the
fact that those loops are closed means ~r · ~J = 0. The role of the gauge field ~

A is again that
its magnetic field lines are the The D = 3 + 0 lattice duality of partition functions isZ Y

i

d✓
i

e

�K cos ✓
ij '

Z Y
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d ~A
`

X
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e

� R
d3x

⇣
1
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2
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We can just stick the basis states in here to make a true statement about wavefunctions of
the D = 3 + 1 quantum XY model:Z Y

i
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i

e
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The K ! 1 ( t/U ! 0) limit is a uniform superposition of vortex loops. It has positive
weights. Usually the vortices don’t carry any internal structure or quantum numbers. Their
condensation then leads to a featureless Mott insulating state, like the product above, in
which case the usual |{✓

i

}i basis is more useful.

The vortex perspective turns out to be quite useful when the vortices carry other quantum
numbers.

39



9 Surface phase structure

At the surface of a D = 3+1 boson SPT the vortices are more interesting. Let’s focus on the
boson SPT protected by U(1)⇥ZT

2 where the vortices are fermions (created by a grassmann
field operator c) and sketch features of the surface phase diagram (all within the same bulk
phase), following closely [1].

• Break U(1), preserve ZT
2 : This surface superfluid is a vortex Mott insulator. It can

be described by letting the fermionic vortices fill bands with zero net Chern number
(required by T ). There is a surface goldstone mode, described by the dual photon a.

• Break U(1) and ZT
2 : Now we can have a surface superfluid which is a vortex Chern

insulator: the fermionic vortices can fill bands with a net Chern number, and hence
a quantized Hall response. The surface e↵ective action, including the coupling to the
external gauge field A is

L[c, a,A] = L[c, a] +
1

2⇡
✏@aA .

This is the case with ✓
EM

= 2⇡, and �
xy

= e

2

h

.

• It is possible to preserve all symmetries and still gap out the edge states by condensing
paired vortices. That is, let the vortices partially fill some bands and form a Fermi liq-
uid with a cooper instability. This higgses the U(1) to Z2 and produces a weird version
of the toric code, where the topological quasiparticles e,m, ✏ = em̄ are respectively two
charge-1

2
bosons and a neutral fermion.

A less sketchy description of these states can be obtained by implementing the duality
transformation starting with two species of bosons. Let the field �

I

create a vortex of boson
b

I

. An interesting dual surface action to consider is

L[�
I

, a

I

, �] =
X
I=1,2

|
�
@

µ

� i
�
a

I

µ

+ �

I

µ

��
�
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|2 � V (|�|2) + i

⇡

�

1
· ✏

···
@·�2

· + iAI

· j
·
I

.

Each pair of a
I

,�
I

is just as in the previous section, so the individual bose currents are
represented as j

I

µ

= 1
2⇡
✏

µ··
@·aI· . The role of the � gauge fields is to change the statistics of

the vortices.

It is also interesting to consider the model obtained by dualizing only one of the species of
bosons. These models are very similar to ones that arose in the study of deconfined critical
points [54].
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10 Locally open questions and omissions

• I didn’t talk about exactly solvable lattice models of SPT phases [15, 55, 56, 14].

• What is microscopic description of the screening process in the 2d antiferromagnet on
the cylinder which decreases ✓ by 2⇡ (§4)? In the case of D = 3+1 boson SPT states,
the process which jumps ✓ by its period (4⇡) is the ‘adsorption’ of a boson IQHE layer
onto the surface.

• How to make a B ^ F representation of the 3+1d boson SPT where the vortex string
has a Kramer’s doublet inside?

• How to describe the state where the vortices are both fermions and Kramer’s doublets
in terms of the sigma model?

• What is the relation between the Neel sigma models we’ve discussed here and the
spacetime lattice sigma models on the protecting group constructed by [9]?

• Can we give a more direct proof of the relation (10) between the AKLT wavefunction
and the strong-coupling limit of the sigma model wavefunctional?

• What exactly is the di↵erence between the strong-coupling limit of (a) nonlinear sigma
models on S

n and that of (b) abelian gauge theory in D = 3 + 1 for the purposes of
constructing wavefunctions? The analogous wavefunction in Maxwell theory is

 [ ~A(x)] = e

i
R
space A^dA

.

This wavefunction actually solves the Schrödinger equation for quantum Maxwell the-
ory at finite coupling. There is even a non-Abelian version of it for which this is also
true. There is even an analog for gravity called the ‘Kodama state’. What’s the catch?
It’s not normalizable as a wavefunction for photon fields [57]; attempting to quantize
the model about this groundstate gives negative energy for one of the two circular
polarization states. Why don’t [2] run into this problem? They would have the same
problem if they thought of their wavefunctions as wavefunctions for gapless magnons!

The analog of the gapped, disordered phase of the NLSM is the confining phase of
the Maxwell theory. So this logic suggests the existence of a topologically nontrivial
confined state of Maxwell theory, with ✓ = 2⇡. If all excitations are bosonic, this is
distinct from ✓ = 0. (If there are no charged particles, all ✓ 2 2⇡Z are distinct?) What
are its characteristics? Actually, we have already encountered this wavefunction in the
BF section. It should also arise via a parton construction, as in [5, 58, 12].

• Speaking of parton constructions: for a long time it was believed (more defensible:
I believed) that only deconfined phases of parton gauge theories were interesting for
condensed matter – why would you want to introduce a gauge field if it is just going to
be confined? Parton constructions for quantum Hall states are an easy and lucrative
exception to this, in that the gauge field acquires a mass via a Chern-Simons term and
so is massive but not confined. A more dramatic exception appears in [59, 60, 61, 62]
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where confined states of parton gauge theories are used to describe superfluid phases
in D = 2 + 1 in terms of variables that allow access to nearby fractionalized phases
(and the degrees of freedom that become light at the intervening phase transitions).

More recently, confined states of parton gauge theories have been used to discuss
D = 3 + 1 SPT states in [63, 5, 58, 12].

• Didn’t [1] actually also classify superfluid phases with short-range entanglement, that
is topology-enriched symmetry-broken phases?

• What is the crucial property shared by all possible edge states with the same bulk
SPT state? Alternatively, what edge state properties can only be changed during a
bulk transition? Some progress on this question is described in [64]. They say: ”In
the presence of a symmetry which remains unbroken in the thermodynamic limit, we
prove that these edge modes, namely the additional ground states that arise whenever
a boundary is present, carry equivalent representations of G within a phase.”
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