Non-Abelian Statistics versus The Witten Anomaly

John McGreevy, MIT

based on:
JM, Brian Swingle, 1006.0004, Phys. Rev. D84 (2011) 065019.

Interactions between hep-th and cond-mat have been very fruitful:
SSB, higgs mechanism, topological solitons ...
More recently: hopes for many practical uses for string theory.
e.g. controllable examples of non-Fermi liquid fixed points
(possible states of fermions at finite density other than Landau's nearly free effective field theory).

QFT question for today: Is it possible to realize deconfined particles in $3+1$ dimensions which exhibit non-abelian statistics? There's a recent set of ideas, inspired by work in cond-mat, suggesting a route to doing this seemingly-impossible thing. Its failure mode is interesting.

Particle statistics

In 3+1 dims particles are either bosons or fermions.
Why: boring topology of configuration space:
$\pi_{0}($ paths $)=\pi_{1}\left(\mathcal{C}_{n}^{3+1}\right)=S_{n}$
$\mathcal{C}_{n}^{d+1} \equiv\{$ config space of n particles $\} \backslash\{$ close approaches $\}$
In $2+1: \pi_{1}\left(\mathcal{C}_{n}^{2+1}\right)=\mathcal{B}_{n}$, braid group (infinite-dimensional) \rightarrow anyons.

Particle statistics

In 3+1 dims particles are either bosons or fermions.
Why: boring topology of configuration space:
π_{0} (paths) $=\pi_{1}\left(\mathcal{C}_{n}^{3+1}\right)=S_{n}$
$\mathcal{C}_{n}^{d+1} \equiv\{$ config space of n particles $\} \backslash\{$ close approaches $\}$
In $2+1: \pi_{1}\left(\mathcal{C}_{n}^{2+1}\right)=\mathcal{B}_{n}$, braid group (infinite-dimensional) \rightarrow anyons.

Figure: Onion braid diagram from [gypsymagicspells.blogspot.com]

Anyons

Abelian anyons: state of several anyons acquires a phase upon braiding. Non-Abelian anyons: braiding acts by a unitary on degenerate statespace.

Abelian anyons exist and have been observed as quasiparticles in well-understood FQHE states.
\exists good evidence that non-Abelian anyons are also realized in FQHE states.

Non-Abelian anyons would make a great quantum computer [Kitaev, Freedman]

- Quantum state stored non-locally protected from decoherence to (local) environment.
- Do computations
by adiabatically braiding anyons.

[Hasan-Kane]

Majorana solitons

A framework for realizing a class of non-abelian anyons: Majorana zeromode localized on soliton

$$
\gamma_{i}=\gamma_{i}^{\dagger} \quad\left\{\gamma_{i}, \gamma_{j}\right\}=2 \delta_{i j} \quad i, j=1 . . n
$$

Hilbert space of groundstates of n solitons represents this algebra.

$$
\Gamma_{1} \equiv \gamma^{1}+i \gamma^{2}, \ldots \quad \Gamma_{1}|\downarrow \downarrow\rangle \equiv 0, \Gamma_{1}^{\dagger}|\downarrow \downarrow\rangle=|\uparrow \downarrow\rangle \ldots
$$

n such 'Ising anyons' make a degenerate space of $\operatorname{dim} \mathcal{H}_{n} \sim \sqrt{2}^{n}$. info about \mathcal{H}_{n} not localized on particles (despite realization in local QFT).

Realizations in $2+1 \mathrm{~d}$: $\nu=\frac{5}{2}$ QH states [Moore-Read, Nayak-Wilczek], $p+i p$ superconductors [Ivanov, Read-Green], surface states of $\mathrm{TI}[$ [Fu-Kane], solvable toy models [Kitaev], many other proposals.

Majorana solitons, an example in $2+1 \mathrm{~d}$

Fermionic quasiparticles in certain 2d superconductors:

$$
\chi \equiv\left(\begin{array}{l}
c_{\uparrow} \\
c_{\downarrow} \\
c_{\uparrow}^{\dagger}
\end{array}\right) \quad \mathcal{L}_{\text {fermions }}=i \chi^{T}\left(\sigma^{i} \partial_{i}+\Phi \Gamma^{+}+\bar{\Phi} \Gamma^{-}\right) \chi
$$

Vortex: $\Phi(r, \varphi)=e^{i \varphi}|\Phi(r)|$
[Jackiw-Rossi, Ivanov, Read-Green] has a majorana zeromode.

Note: Ising anyons are a special case
 (not universal for quantum computation).

Lesson: All we need to do to realize non-Abelian (Ising) statistics is to find solitons with normalizable majorana zeromodes.

Majorana hedgehogs

Consider a $3+1 \mathrm{~d}$ system with a global $S O(3)$ symmetry broken by an adjoint scalar vev

$$
\left\langle\Phi^{A} \Phi^{A}\right\rangle=v^{2} \quad A=1,2,3
$$

Couple to a real 8-component spinor (two majorana doublets of $S U(2) \simeq S O(3)$):

$$
H_{\text {fermions }}=i \chi^{T}\left(\gamma^{i} \partial_{i}+\lambda \Phi_{A} \Gamma^{A}\right) \chi
$$

$\langle\Phi\rangle$ gaps fermions, $m_{\text {bulk }} \sim \lambda v$.

Majorana hedgehogs

Consider a 3+1d system with a global $S O(3)$ symmetry broken by an adjoint scalar vev

$$
\left\langle\Phi^{A} \Phi^{A}\right\rangle=v^{2} \quad A=1,2,3
$$

Couple to a real 8-component spinor (two majorana doublets of $S U(2) \simeq S O(3)$):

$$
H_{\text {fermions }}=i \chi^{T}\left(\gamma^{i} \partial_{i}+\lambda \Phi_{A} \Gamma^{A}\right) \chi
$$

$\langle\Phi\rangle$ gaps fermions, $m_{\text {bulk }} \sim \lambda v$.
Hedgehog: $\phi^{A}=\hat{r}^{A} \phi(r) \quad \phi(r) \stackrel{r \rightarrow \infty}{\sim} v, \quad \phi(r) \xrightarrow{r \rightarrow 0} 0$ has a majorana zeromode.

Majorana hedgehogs

Consider a 3+1d system with a global $S O(3)$ symmetry broken by an adjoint scalar vev

$$
\left\langle\Phi^{A} \Phi^{A}\right\rangle=v^{2} \quad A=1,2,3
$$

Couple to a real 8-component spinor (two majorana doublets of $S U(2) \simeq S O(3)$):

$$
H_{\text {fermions }}=i \chi^{T}\left(\gamma^{i} \partial_{i}+\lambda \Phi_{A} \Gamma^{A}\right) \chi
$$

$\langle\Phi\rangle$ gaps fermions, $m_{\text {bulk }} \sim \lambda v$.
Hedgehog: $\phi^{A}=\hat{r}^{A} \phi(r) \quad \phi(r) \stackrel{r \rightarrow \infty}{\sim} v, \quad \phi(r) \xrightarrow{r \rightarrow 0} 0$ has a majorana zeromode.

Aside on motivation from topological insulators with superconductors attached: [Fu-Kane 08, Teo-Kane 09, Wilczek, unpublished]
$\Phi^{1}+i \Phi^{2}=$ supercond. order parameter (zero at vortex)
$\Phi^{3}=$ Dirac mass (changes sign at bdy of TI)

Problems of majorana hedgehogs

The hedgehogs are not quite particles: spatial var. of Φ is extra data. Minimal data for topology: preimage under Φ of north pole and nearby point \longrightarrow ribbon between hedgehog pairs.
[Freedman et al, 1005.0583]
"projective ribbon statistics"

Problems of majorana hedgehogs

The hedgehogs are not quite particles: spatial var. of Φ is extra data. Minimal data for topology: preimage under Φ of north pole and nearby point
\longrightarrow ribbon between hedgehog pairs.
[Freedman et al, 1005.0583]
"projective ribbon statistics"
Observation: Variation of Φ costs energy.

Hedgehogs are not finite-energy excitations

$$
E=H\left[\Phi_{\text {hedgehog }}\right] \sim \int_{0}^{L} d^{3} x\left(\vec{\nabla} \Phi^{A} \cdot \vec{\nabla} \Phi_{A}+\ldots\right) \sim v^{2} L
$$

(like global SO(2) vortex in $2+1$ dims).
Configurations with zero total hedgehog number have finite energy But: $V_{\text {eff }}(R) \sim \int_{0}^{R} r^{2} d r \cdot\left(\frac{\phi}{r}\right)^{2} \sim R v^{2}$. linear confinement.

Not so good for adiabatic motion.

Deconfined majorana solitons in $3+1$ dims?

Two apparently-different routes to models with deconfined majorana particles:

- Gauge the SU(2) symmetry
- Disorder the $\langle\Phi\rangle$. (Zero stiffness, no gradient energy.)

Gauge the SU(2)

- $\quad \operatorname{SU}(2) \xrightarrow{\langle\Phi\rangle \in \operatorname{adj}} U(1)$
- Sol'n with $\Phi^{A}=\hat{r}^{A} \phi(r) \rightarrow$ 't Hooft-Polyakov monopole:

$$
\begin{gathered}
A_{i}^{A}=\epsilon_{i j A} \hat{r}^{j} A(r), A_{0}^{A}=0 \\
\phi(r) \stackrel{r \rightarrow \infty}{\sim} v, \quad A(r) \stackrel{r \rightarrow \infty}{\sim} \frac{1}{r} \Longrightarrow D_{i} \Phi^{r \rightarrow \infty} \rightarrow 0 .
\end{gathered}
$$

- carries magnetic charge $=$ hedgehog $\#$
\Longrightarrow magnetic coulomb force $F \sim \frac{q_{m} q_{m}^{\prime}}{r^{2}}$ (falls off!)

Gauge the $\operatorname{SU}(2)$

- $\quad \mathrm{SU}(2) \xrightarrow{\langle\Phi\rangle \in \operatorname{adj}} U(1)$
- Sol'n with $\Phi^{A}=\hat{r}^{A} \phi(r) \rightarrow$ 't Hooft-Polyakov monopole:

$$
A_{i}^{A}=\epsilon_{i j A} \hat{r}^{j} A(r), A_{0}^{A}=0
$$

$$
\phi(r) \stackrel{r \rightarrow \infty}{\sim} v, \quad A(r) \stackrel{r \rightarrow \infty}{\sim} \frac{1}{r} \Longrightarrow D_{i} \Phi^{r \rightarrow \infty} 0 .
$$

- carries magnetic charge $=$ hedgehog $\#$
\Longrightarrow magnetic coulomb force $F \sim \frac{q_{m} q_{m}^{\prime}}{r^{2}}$ (falls off!)

$$
\mathcal{L}_{\text {fermions }}=\chi^{\dagger} i \bar{\sigma}^{\mu} D_{\mu} \chi-\frac{1}{2} \lambda \chi^{\vee} \vec{\tau} \cdot \vec{\Phi} \chi+\text { h.c. }
$$

$\chi_{\alpha a}$ Weyl $\in(1,2,2)$ of $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R} \times \operatorname{SU}(2)_{\text {gauge }}$

$$
\chi^{\vee} \equiv \chi^{\top} i \sigma^{2} i \tau^{2} \in(1, \overline{2}, \overline{2})
$$

- Two independent mass scales:
$m_{W}=g v$, and the mass of the fermion λv.

Gauge the $\operatorname{SU}(2)$

- $\quad \operatorname{SU}(2) \xrightarrow{\langle\Phi\rangle \in \operatorname{adj}} U(1)$
- Sol'n with $\Phi^{A}=\hat{r}^{A} \phi(r) \rightarrow$ 't Hooft-Polyakov monopole:

$$
A_{i}^{A}=\epsilon_{i j A} \hat{r}^{j} A(r), A_{0}^{A}=0
$$

$$
\phi(r) \stackrel{r \rightarrow \infty}{\sim} v, \quad A(r) \stackrel{r \rightarrow \infty}{\sim} \frac{1}{r} \Longrightarrow D_{i} \Phi^{r \rightarrow \infty} 0 .
$$

- carries magnetic charge $=$ hedgehog $\#$
\Longrightarrow magnetic coulomb force $F \sim \frac{q_{m} q_{m}^{\prime}}{r^{2}}$ (falls off!)

$$
\mathcal{L}_{\text {fermions }}=\chi^{\dagger} i \bar{\sigma}^{\mu} D_{\mu} \chi-\frac{1}{2} \lambda \chi^{\vee} \vec{\tau} \cdot \vec{\Phi} \chi+\text { h.c. }
$$

$\chi_{\alpha a}$ Weyl $\in(1,2,2)$ of $\operatorname{SU}(2)_{L} \times \operatorname{SU}(2)_{R} \times \operatorname{SU}(2)_{\text {gauge }}$

$$
\chi^{\vee} \equiv \chi^{T} i \sigma^{2} i \tau^{2} \in(1, \overline{2}, \overline{2})
$$

- Two independent mass scales: $m_{W}=g v$, and the mass of the fermion λv.
[- Does not exist: Witten anomaly [Witten 1982]]

Majorana zeromode

Momentarily treat A, Φ as classical background fields:
Dirac equation

$$
0=\delta_{\bar{\chi}} S_{\text {fermion }}=-i \bar{\sigma}^{\mu} D_{\mu} \chi+\lambda^{\dagger} i \sigma^{2} \Phi \cdot \tau i \tau^{2} \chi^{\star}
$$

ansatz from [Jackiw-Rebbi, 1976], with reality conditions.
$\chi_{\alpha a}=i \tau_{\alpha a}^{2} g(r)(\alpha:$ spin index, a: $\operatorname{SU}(2)$ doublet index).

$$
\left(\partial_{i}+2 \hat{r}_{i} A\right) g+i \lambda \phi \hat{r}_{i} g^{\star}=0
$$

rephasing $\chi \Longrightarrow \lambda>0$ WLOG

$$
g(r)=c e^{-\pi i / 4} e^{-\int^{r}(\lambda \phi-2 A)}
$$

c is a real constant. phase of the normalizable solution determined by normalizability at $r \rightarrow \infty$.

Witten anomaly

$$
\int[D \chi] e^{i S_{\text {fermions }}[\chi, A, \Phi]} \equiv e^{i \Gamma[A, \Phi]} \times \text { non-universal stuff }
$$

Fermion determinant represents $\pi_{4}(\mathrm{SU}(2))=\mathbb{Z}_{2}$:

$$
(\star) \quad e^{i \Gamma\left[A^{g}, \Phi^{g}\right]}=(-1)^{[g]} e^{i \Gamma[A, \Phi]} .
$$

But A, A^{g} are continuously connected:

$$
\Longrightarrow \int[D A D \Phi] e^{i \Gamma[A, \Phi]} \times(\text { anything gauge invariant })=0
$$

One argument for (\star) : Embed the theory in an SU(3) gauge theory with a perturbative gauge anomaly
[Witten:1983,Elitzur:1984,Klinkhamer:1990].
Calculate the variation of the fermion measure between $\mathbb{1}$ and g by integrating the SU(3) anomaly.
Claim: The addition of the adjoint scalar Φ doesn't change this.

Witten anomaly with adjoint scalar

More explicitly: consider the (perturbatively anomalous) $\mathrm{SU}(3)$ gauge theory with

- an adjoint scalar $\tilde{\Phi}$,
- an SU(3) triplet of Weyl fermions $\tilde{\chi}$
- an SU(3) triplet of scalars Υ, with the coupling

$$
L_{S U(3)} \supset \tilde{\chi}_{a}^{T} i \sigma^{2} \Upsilon_{b} \epsilon_{a b c} \tilde{\Phi}_{c d} \tilde{\chi}_{d}
$$

$a=1,2,3$ is a triplet index.
$\langle\Upsilon\rangle=\lambda$ breaks the $\mathrm{SU}(3)$ down to $\mathrm{SU}(2)$, is the Yukawa coupling. The form of the perturbative $\operatorname{SU}(3)$ anomaly is unaffected by the addition of scalars.
$\Gamma[A, \Phi]$ is a smooth functional for invertible Φ (integrate out massive fermions) Ineffable: naive $\Gamma_{W Z W}[A, \Phi]=0$ for $\operatorname{SU}(2)$.

Canceling the Witten anomaly

$$
S[\chi, \Phi, A] \rightarrow S[\chi, \Phi, A]+\Gamma[\Phi, A]
$$

But: if $\Phi=0$ anywhere, Γ is ill-defined. (e.g. core of monopole.) Requires UV completion.
Important point: presence of fermion zms is a UV sensitive question.

$$
L_{2} \text { fermions }=\chi^{\prime \dagger} i \bar{\sigma}^{\mu} D_{\mu} \chi_{I}-\lambda^{I J} \chi_{I}^{\vee} \vec{\tau} \cdot \vec{\Phi}_{\chi_{J}}-m^{I J} \chi_{I}^{\vee} \chi_{J}+\text { h.c. }
$$

$\chi_{I \alpha a}$ a pair of (left-handed) Weyl doublets of $\operatorname{SU}(2)$:
$I=1,2$ a flavor index, $\alpha=1,2$: spin, $a=1,2$ gauge. 2^{3} complex fermions
Same spectrum as [Jackiw-Rebbi 76] but more general couplings.
Three mass scales:
the mass of the W-bosons, $m_{W}=g v$, and the masses of the two Weyl fermions $\lambda_{1,2} v$

$$
\text { For } \lambda_{1} v \ll m_{W} \ll \lambda_{2} v \quad-\lambda_{1} v
$$

large window of energies with same bulk spectrum as above.

Relation to Jackiw-Rebbi model

λ is symmetric, $\lambda^{I J}=\lambda^{J I}$ by Fermi statistics.
By field redefinitions, can diagonalize λ with real eigenvalues $\lambda_{1,2}$. Phase of m is physical.
$m=m^{\dagger}$, preserves a CP symmetry $\chi \mapsto i \sigma^{2} i \tau^{2} \chi^{\star}$.

Relation to Jackiw-Rebbi model

λ is symmetric, $\lambda^{I J}=\lambda^{J I}$ by Fermi statistics.
By field redefinitions, can diagonalize λ with real eigenvalues $\lambda_{1,2}$. Phase of m is physical.
$m=m^{\dagger}$, preserves a CP symmetry $\chi \mapsto i \sigma^{2} i \tau^{2} \chi^{\star}$.
Jackiw-Rebbi case: $\lambda_{1}=\lambda_{2} \equiv \lambda_{0} \Longrightarrow$ extra U(1) symmetry:

$$
\begin{gathered}
\left.\chi_{1} \mapsto e^{i \theta} \chi_{1}, \quad \chi_{2} \mapsto e^{-i \theta} \chi_{2} \quad \text { (in basis where } \lambda=\left(\begin{array}{cc}
0 & \lambda_{0} \\
\lambda_{0} & 0
\end{array}\right)\right) \\
\Psi \equiv\binom{\chi_{1}}{\chi_{2}^{\star} i \tau^{2} i \sigma^{2}} . \quad \lambda_{0} \equiv \lambda_{0}^{R}+i \lambda_{0}^{\prime} \\
L_{2 \text { fermions }}= \\
=\bar{\Psi} i \not D \Psi-\bar{\Psi}\left(\lambda_{0}^{R}+i \lambda_{0}^{l} \gamma^{5}\right) \vec{\tau} \cdot \vec{\phi} \Psi+m \bar{\psi} \Psi .
\end{gathered}
$$

For $m=0, \mathrm{JR}$ found in this model a complex zeromode of the monopole.
Quantizing this mode makes the monopole into a pair of bosons of charge $\pm e / 2$ (under the 'extra' $U(1)$).

Fermion zeromodes in the two-doublet model

For $m_{\text {Dirac }}=0$:
In the basis where λ is diagonal with real evals $\lambda_{1,2}$, zeromode equations for $\chi_{1,2}$ decouple. Two real solutions, like JR:

$$
\chi_{I \alpha a}(r)=i \tau_{\alpha a}^{2} g_{I}, \quad g_{I}=c_{I} e^{-\pi i / 4} e^{-\int^{r}\left(\lambda_{l} \phi-2 A\right)}
$$

For $m_{\text {Dirac }} \neq 0$:
Ansatz which decomposes $\chi \in(2,2)$ into irreps of the unbroken $S U(2) \subset S U(2)_{\text {gauge }} \times S U(2)_{\text {spin }}:$

$$
\chi_{a \alpha I}=i \tau_{a \alpha}^{2} g_{I}+i\left(\tau^{2} \tau^{i}\right)_{a \alpha} g_{l}^{i}
$$

Guess: $\vec{g}=\hat{r} g_{r}(r)$. Dirac equation becomes:

$$
\begin{aligned}
& 0=i \vec{\nabla} g-2 i \hat{r} A g-\lambda^{\dagger} g^{\star} \phi \hat{r}-m^{\dagger} \vec{g}^{\star} \\
& 0=i \vec{\nabla} \cdot \vec{g}+2 i A \vec{g} \cdot \hat{r}+\lambda^{\dagger} \vec{g}^{\star} \cdot \hat{r} \phi+m^{\dagger} g^{\star}
\end{aligned}
$$

Conclusions about zeromodes

- First assume $m=m^{\dagger}$.

For $\sqrt{\lambda_{1} \lambda_{2}} v<m$, both modes are non-normalizable.
(Else, both normalizable.)
Check: $\operatorname{det} M_{\text {bulk }}=\left(\lambda_{1} \lambda_{2} v^{2}-m^{2}\right)^{2} \rightarrow 0$ precisely at marginal normalizibility.
Sizes of zms can be varied independently by $\lambda_{1,2}$.

The zeromode wavefunctions involve products of exponentials of the form $e^{m r} e^{-\lambda v r}$, one might have thought (pantingly) that one zeromode would become non-normalizable, e.g. for $\lambda_{1} v<m<\lambda_{2} v$.
This hope is not realized.
Remnant: sometimes zm profile is ring-like: \longrightarrow

- For $m \neq m^{\dagger}$ no zero-energy solutions.

No-go arguments

1. If we gauge away or disorder the Station Q ribbon, the configuration space has $\pi_{1}\left(\mathcal{C}_{n}\right)=S_{n}$.
2. Rough sketch of argument for inevitability of Witten anomaly:

Witten anomaly
chiral anomaly mod two

In a Witten-anomalous theory, $(-1)^{F}=e^{i \pi j_{0}^{\text {axial }}}=e^{i \pi \tau^{3}}$ is a gauge symmetry. [Goldstone, 83]
\Longrightarrow chiral anomaly mod two is a gauge anomaly.
(In a normal theory: $\psi_{L} \rightarrow \bar{\psi}_{R}$.
Here: $\psi_{L} \rightarrow$ vacuum.)

$$
\operatorname{ind}_{\mathbb{R}} D[\text { monopole }] \stackrel{?}{=} \oint_{S_{\infty}^{2}} \vec{\nabla} \cdot \vec{j} \text { axial }
$$

[Callias 78]: ind \mathbb{C}^{D}
[Santos-Nishida-Chamon-Mudry, 09]: real index for vortex in 2d

5d model

Some theories are only realizable as the boundary of a higher-dimensional model. [Nielsen-Ninomiya, Kaplan]
e.g.: domain-wall fermions in lattice QCD,
single dirac cones on surface of a topological insulator
Consider SU(2) gauge theory in $4+1$ dimensions with a Dirac fermion doublet and adjoint Higgs.
On a circle: fourth spatial dimension $y \simeq y+2 \pi R$.
Kink of $M(r)$
supports a 4d massless Weyl fermion.

Bad features: 5d; needs UV completion (lattice, strings); kinks can annihilate. Mass scales: M_{W}, R^{-1}, the Dirac mass m, the inverse thickness of the kink, extreme UV cutoff
At energies $E \ll 1 / R$, this model reduces to the two-doublet theory above.

Majorana monopole strings

$q \in \pi_{2}\left(S^{2}\right)$ supports monopole strings.
(3d particles when stretched along y).
Intersections between monopole strings and domain walls of 5d mass
\rightarrow localized Majorana zeromodes.

- the two Majorana modes need not pair up.

For $m \gg R^{-1}$, their
wavefunction overlap is exponentially small.

- low-energy braiding always exchanges majoranas in pairs
- dyon rotor $\rightarrow 1+1 \mathrm{XY}$ model along string. decoherence to local basis or linear confinement from monopole string tension:

Disordering the $\mathrm{SU}(2)$

Imagine a state with hedgehogs but zero stiffness (no LRO).
Effective field theories for such states are usefully studied using
"slave particle" techniques
(successful in similar problem of spin liquid states).
Result: emergent $\mathrm{U}(1)$ gauge theory, under which the defects are magnetically charged.
Again requires UV completion.
One way to do it: $\operatorname{SU}(2)$ gauge theory with a Weyl doublet.
Another attempt [Freedman, Hastings, Nayak, Qi, 1107.2731]: a lattice model (majorana fermions with hopping amplitudes determined by a quantum dimer model configuration)
They argue for a majorana zeromode on the defect.
But: gapless bulk fermions.
Reduces to two-doublet model with $m=0, \lambda_{1} \neq 0, \lambda_{2}=0$!

Other possible loopholes?

- What if we just gauge the $U(1) \subset S U(2)$? Still linear tension.
- What if the 5th dimension ends?

For some boundary conditions: gapless 4d mode [Station Q].

- Lorentz-breaking fermion kinetic terms [Tong]? Still anomalous?

Other possible loopholes?

- What if we just gauge the $U(1) \subset S U(2)$? Still linear tension.
- What if the 5th dimension ends?

For some boundary conditions: gapless 4d mode [Station Q].

- Lorentz-breaking fermion kinetic terms [Tong]? Still anomalous?

Conclusion: It would be nice to tighten the no-go statement (prove the $\mathrm{Callias}_{\mathbb{R}}$ index theorem, understand the functional Γ) and it will be interesting to see what other physics has to come in to save the world from non-Abelian statistics in $3+1$ dimensions.

Final positive comment: These issues are important for understanding possible generalizations of the notion of flux attachment from $2+1$ to $3+1$.

The end

Thanks for listening.

