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Interactions between hep-th and cond-mat have been very fruitful:
SSB, higgs mechanism, topological solitons ...

More recently: hopes for many practical uses for string theory.

e.g. controllable examples of non-Fermi liquid fixed points

(possible states of fermions at finite density other than Landau’s nearly free

effective field theory).

QFT question for today: Is it possible to realize deconfined
particles in 34+1 dimensions which exhibit non-abelian statistics?
There's a recent set of ideas, inspired by work in cond-mat,
suggesting a route to doing this seemingly-impossible thing.

Its failure mode is interesting.



Particle statistics
In 3+1 dims particles are either bosons or fermions.
Why: boring topology of configuration space:
7o (paths) = 1 (C3H1) = S,
CI+1 = {config space of n particles}\{close approaches}

In 241: 71(C2*1) = B,, braid group (infinite-dimensional) — anyons.
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Figure: Onion braid diagram from [gypsymagicspells.blogspot.com]



Anyons

Abelian anyons: state of several anyons acquires a phase upon braiding.

Non-Abelian anyons: braiding acts by a unitary on degenerate statespace.

Abelian anyons exist and have been observed as quasiparticles in
well-understood FQHE states.

3 good evidence that non-Abelian anyons are also realized in FQHE states.

Non-Abelian anyons would make Measure (101203:5-+ 11210
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Majorana solitons

A framework for realizing a class of non-abelian anyons:
Majorana zeromode localized on soliton

Yi = ’Y,-T {Vi,y}=26; i,j=1.n
Hilbert space of groundstates of n solitons represents this algebra.
=2+ T W) =0, W) =1

n such ‘Ising anyons’ make a degenerate space of dimH, ~ V2"

info about H, not localized on particles (despite realization in local QFT).

Realizations in 2 + 1d:
V= g QH states [Moore-Read, Nayak-Wilczek], p + ip superconductors [vanov, Read-Green],

surface states of Tl [Fu-Kane], solvable toy models [Kitaev], many other proposals.



Majorana solitons, an example in 2+1 d

Fermionic quasiparticles in certain 2d superconductors:
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Vortex: ®(r,p) = e'?|d(r)|
[Jackiw-Rossi, Ivanov, Read-Green] 3L |(I)|
has a majorana zeromode.

Note: Ising anyons are a special case : ‘ ¢ v

(not universal for quantum computation).

Lesson: All we need to do to realize non-Abelian (Ising) statistics
is to find solitons with normalizable majorana zeromodes.



Majorana hedgehogs
Consider a 3+1d system with a global SO(3) symmetry
broken by an adjoint scalar vev

(P =2 A=1,2,3.

Couple to a real 8-component spinor
(two majorana doublets of SU(2) ~ SO(3)):

errmions = iXT <7i8i + >\¢AFA) X

() gaps fermions, mpy ~ Av.
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has a majorana zeromode.

() gaps fermions, mpy ~ Av. T
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Aside on motivation from topological insulators with
su peI’COHdUCtOI’S attaChed [Fu-Kane 08, Teo-Kane 09, Wilczek, unpublished]

! + jd? = supercond. order parameter (zero at vortex)
®3 = Dirac mass (changes sign at bdy of TI) ~ -=-----




Problems of majorana hedgehogs

The hedgehogs are not quite particles: spatial var. of ® is extra data.
Minimal data for topology:

preimage under ® of north pole and nearby point

— ribbon between hedgehog pairs. 6

[Freedman et al, 1005.0583]

“projective ribbon statistics”



Problems of majorana hedgehogs

The hedgehogs are not quite particles: spatial var. of ® is extra data.
Minimal data for topology:
preimage under ® of north pole and nearby point 6

— ribbon between hedgehog pairs.

[Freedman et al, 1005.0583]

“projective ribbon statistics”
Observation: Variation of ® costs energy.
Hedgehogs are not finite-energy excitations

L
E = H[®hedgehog] ~ / d3x (V¢A Vba+ ) ~ V2L
0

(like global SO(2) vortex in 2+1 dims).
Configurations with zero total hedgehog number have finite energy

2
But Ver(R) ~ Jy* 2 () <R ey
linear confinement. =

Not so good for adiabatic motion.



Deconfined majorana solitons in 3 4+ 1 dims?

Two apparently-different routes to models with
deconfined majorana particles:

» Gauge the SU(2) symmetry

» Disorder the <¢> (Zero stiffness, no gradient energy.)



Gauge the SU( )
su) ‘5 y()
e  Sol'n with CDA = #A4(r) — ‘'t Hooft-Polyakov monopole:

AL = e;at A(r), AS =0

1
o(r) v, Alr)"R°Z = Do =70.
r

e carries magnetic charge = hedgehog #
= magnetic coulomb force F ~ Iz (falls off!)
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e Two independent mass scales:
mw = gv, and the mass of the fermion Av.



Gauge the SU( )
su) ‘5 y()
e  Sol'n with CDA = #A4(r) — ‘'t Hooft-Polyakov monopole:

AL = e;at A(r), AS =0

1
o(r) v, Alr)"R°Z = Do =70.
r

e carries magnetic charge = hedgehog #
= magnetic coulomb force F ~ Iz (falls off!)

o Ltermions = XT/.&“DMX - 5)\)(\/7_" CBX + h.c.
Xaa Weyl S (1,2,2) of SU(2)L X SU(2)R X SU(2)gauge

' =xTio?%it? € (1,2,2)
e Two independent mass scales:
mw = gv, and the mass of the fermion Av.
[ @ Does not exist: Witten anomaly [witten 1982] ]



Majorana zeromode

Momentarily treat A, ® as classical background fields:
Dirac equation

0= 5)_(5fermion = _i5MD,uX + )\Ti0—2¢ . 7.,'7_2X* )

ansatz from [Jackiw-Rebbi, 1976], with reality conditions.

Xaa = iTéag(r) (c: spin index, a: SU(2) doublet index).

(9; + 2% A)g + iAphig” = 0.
rephasing x = A > 0 WLOG

g(r) — ce Til4e f'()«;ﬁ—?A)

30|

c is a real constant.

phase of the normalizable s
solution determined by normalizability at r — oo.




Witten anomaly

/[Dx]eisfefm‘°“S[X’A’¢] = eMA®]  non-universal stuff

Fermion determinant represents m4(SU(2)) = Z> :

(%) eTA%E] — (_1)leloTA]
But A, A8 are continuously connected:
= /[DADdD]eir[A’q’] x (anything gauge invariant) =0

One argument for (x): Embed the theory in an SU(3) gauge
theory with a perturbative gauge anomaly

[Witten:1983, Elitzur:1984,Klinkhamer:1990].

Calculate the variation of the fermion measure between 1 and g by
integrating the SU(3) anomaly.

Claim: The addition of the adjoint scalar ® doesn't change this.



Witten anomaly with adjoint scalar

More explicitly: consider the (perturbatively anomalous) SU(3) gauge
theory with

e an adjoint scalar P,

e an SU(3) triplet of Weyl fermions {

e an SU(3) triplet of scalars T,

with the coupling

Lsu(z) O X2 i0° T heancPeafa,

a=1,2,3is a triplet index.
(T) = X breaks the SU(3) down to SU(2), is the Yukawa coupling.
The form of the perturbative SU(3) anomaly is unaffected by the addition of

scalars.

A, ®] is a smooth functional for invertible ¢

(integrate out massive fermions)

Ineffable: naive M'ywzw[A, ®] = 0 for SU(2).



Canceling the Witten anomaly

Six, ®, Al — S[x, @, A] + [, A]

But: if ® = 0 anywhere, I is ill-defined. (e.g. core of monopole.)
Requires UV completion.
Important point: presence of fermion zms is a UV sensitive question.

Ly fermions = X' 1id" Dyxi — Ax) 7 - x5 — mYx) xs + h.c.

Xlaa @ pair of (left-handed) Weyl doublets of SU(2):
| =1,2 a flavor index, a = 1,2: spin, a = 1,2 gauge. 2 complex fermions

Same spectrum as [Jackiw-Rebbi 76] but more general couplings.

Three mass scales: E .
the mass of the W-bosons, my, = gv, 2
and the masses of the two Weyl fermions \j v
gv
For Miv < my < Aov AV

large window of energies with same bulk spectrum as above.



Relation to Jackiw-Rebbi model

X is symmetric, AY = AJ! by Fermi statistics.
By field redefinitions, can diagonalize A with real eigenvalues A1 5.
Phase of m is physical.

m = m', preserves a CP symmetry x — ic?

i7'2x*.



Relation to Jackiw-Rebbi model

X is symmetric, AY = AJ! by Fermi statistics.

By field redefinitions, can diagonalize A with real eigenvalues A1 5.
Phase of m is physical.

m = m', preserves a CP symmetry x — io2iT2x*.

Jackiw-Rebbi case: A\; = Ao = \g = extra U(1) symmetry:

X1 €%x1, x2r> e xa  (in basis where A = (fo AO°>)

wz( L 2). Xo = AZ+ 0N

X3IT io
Lofermions = \TJILD\U —V (Ag + l)\(I)’Y5) T~ CBW + mUv,

For m = 0, JR found in this model a complex zeromode of the
monopole.

Quantizing this mode makes the monopole into a pair of bosons of
charge £e/2 (under the ‘extra’ U(1)).



Fermion zeromodes in the two-doublet model

For MDirac = 0:
In the basis where X is diagonal with real evals A1 2, zeromode equations for

X1,2 decouple. Two real solutions, like JR:

Xiaa(r) = iT2,81, & = e ™/4em ['io=24)

For mpjrac # 0:

Ansatz which decomposes x € (2,2) into irreps of the unbroken
SU(2) C SU(2)gauge X SU(2)SpiIl:

- 2 (20 '
Xaal = IT5,81 + i (T T’)aa g-
Guess: g = ?g,(r). Dirac equation becomes:

0 iVg —2itAg — Mg or — mig*

o
Il

iV-g+2iAg P+ Mg po+ migr.



Conclusions about zeromodes

e First assume m = m'.
For v/A1Aov < m, both modes are non-normalizable.
(Else, both normalizable.)

Check: det My = ()\1)\2 v — m2)2 — 0 precisely at marginal normalizibility.
Sizes of zms can be varied independently by A ».

The zeromode wavefunctions involve products of exponentials of
the form e™e~*"", one might have thought (pantingly) that one
zeromode would become non-normalizable, e.g. for
AV < m< Aov.

This hope is not realized.

Remnant: sometimes zm profile is ring-like: —

e For m # m' no zero-energy solutions.



No-go arguments
1. If we gauge away or disorder the Station Q ribbon, the
configuration space has 71(C,) = S,.
2. Rough sketch of argument for inevitability of Witten anomaly:

Witten chiral anomaly majorana number
s e
anomaly mod two of monopole
. i raxial f3 .
In a Witten-anomalous theory, (—1)F = ™5™ = '™ is a gauge

symmetry [Goldstone, 83]

= chiral anomaly mod two is a gauge anomaly.
(In a normal theory: ¥ — r.

Here: ¢ —vacuum.)

indg [2[monopole] ;}{ g . jcal
S%

[Callias 78]. |nd® @

[Santos-Nishida-Chamon-Mudry, 09]. real indeX for vortex in 2d



5d model

Some theories are only realizable as the boundary of a

hlgher—d|mens|0na| mOde| [Nielsen-Ninomiya, Kaplan]
e.g.: domain-wall fermions in lattice QCD,

single dirac cones on surface of a topological insulator
Consider SU(2) gauge theory in 4+1 dimensions
with a Dirac fermion doublet and adjoint Higgs.
On a circle: fourth spatial dimension y ~ y 4+ 27R. M®

Kink of M(r)

supports a 4d massless Weyl fermion. J ’

Bad features: 5d; needs UV

completion (lattice, strings); kinks can annihilate.
Mass scales: My, R~L, the Dirac mass m,

the inverse thickness of the kink, extreme UV cutoff

At energies E < 1/R, this model reduces to the two-doublet theory above.



Majorana monopole strings

q € m(S?) supports monopole strings.
(3d particles when stretched along y).
Intersections between monopole strings
and domain walls of 5d mass

— localized Majorana zeromodes.

space

o
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e the two Majorana modes need not pair up.
For m > R~L, their

wavefunction overlap is exponentially small.
e low-energy

braiding always exchanges majoranas in pairs
e dyon rotor — 1+1 XY model along string.
decoherence to local basis or linear / M> M<0 ~
confinement from monopole string tension:

space




Disordering the SU(2)

Imagine a state with hedgehogs but zero stiffness (no LRO).
Effective field theories for such states are usefully studied using
“slave particle” techniques

(successful in similar problem of spin liquid states).

Result: emergent U(1) gauge theory, under which the defects are
magnetically charged.

Again requires UV completion.

One way to do it: SU(2) gauge theory with a Weyl doublet.

Another attempt [Freedman, Hastings, Nayak, Qi, 1107.2731]: @ lattice model
(majorana fermions with hopping amplitudes determined by a quantum dimer
model configuration)

They argue for a majorana zeromode on the defect.

But: gapless bulk fermions.

Reduces to two-doublet model with m =0, A1 # 0, A, = 0!



Other possible loopholes?

» What if we just gauge the U(1) C SU(2)?
Still linear tension.
» What if the 5th dimension ends?
For some boundary conditions: gapless 4d mode [station qJ.

» Lorentz-breaking fermion kinetic terms [tong?
Still anomalous?



Other possible loopholes?

» What if we just gauge the U(1) C SU(2)?
Still linear tension.
» What if the 5th dimension ends?
For some boundary conditions: gapless 4d mode [station qJ.

» Lorentz-breaking fermion kinetic terms [tong?
Still anomalous?

Conclusion: It would be nice to tighten the no-go statement
(prove the Calliasg index theorem, understand the functional I')

and it will be interesting to see what other physics has to come in
to save the world from non-Abelian statistics in 341 dimensions.

Final positive comment: These issues are important for
understanding possible generalizations of the notion of flux
attachment from 241 to 3+1.



The end

Thanks for listening.



