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Interactions between hep-th and cond-mat have been very fruitful:
SSB, higgs mechanism, topological solitons ...

More recently: hopes for many practical uses for string theory.
e.g. controllable examples of non-Fermi liquid fixed points

(possible states of fermions at finite density other than Landau’s nearly free

effective field theory).

QFT question for today: Is it possible to realize deconfined
particles in 3+1 dimensions which exhibit non-abelian statistics?
There’s a recent set of ideas, inspired by work in cond-mat,
suggesting a route to doing this seemingly-impossible thing.
Its failure mode is interesting.



Particle statistics
In 3+1 dims particles are either bosons or fermions.
Why: boring topology of configuration space:
π0 (paths) = π1(C3+1

n ) = Sn

Cd+1
n ≡ {config space of n particles}\{close approaches}

In 2+1: π1(C2+1
n ) = Bn, braid group (infinite-dimensional) → anyons.

Figure: Onion braid diagram from [gypsymagicspells.blogspot.com]
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Anyons

Abelian anyons: state of several anyons acquires a phase upon braiding.

Non-Abelian anyons: braiding acts by a unitary on degenerate statespace.

Abelian anyons exist and have been observed as quasiparticles in
well-understood FQHE states.
∃ good evidence that non-Abelian anyons are also realized in FQHE states.

Non-Abelian anyons would make
a great quantum computer [Kitaev, Freedman]

[Hasan-Kane]

• Quantum state stored non-locally
protected from decoherence to (local) environment.

• Do computations
by adiabatically braiding anyons.



Majorana solitons

A framework for realizing a class of non-abelian anyons:
Majorana zeromode localized on soliton

γi = γ†i {γi , γj} = 2δij i , j = 1..n

Hilbert space of groundstates of n solitons represents this algebra.

Γ1 ≡ γ1 + iγ2, ... Γ1| ↓↓〉 ≡ 0, Γ†1| ↓↓〉 = | ↑↓〉...

n such ‘Ising anyons’ make a degenerate space of dimHn ∼
√

2
n
.

info about Hn not localized on particles (despite realization in local QFT).

Realizations in 2 + 1d:
ν = 5

2
QH states [Moore-Read, Nayak-Wilczek], p + ip superconductors [Ivanov, Read-Green],

surface states of TI [Fu-Kane], solvable toy models [Kitaev], many other proposals.



Majorana solitons, an example in 2+1 d

Fermionic quasiparticles in certain 2d superconductors:

χ ≡


c↑
c↓
c†↑
c†↓

 Lfermions = iχT
(
σi∂i + ΦΓ+ + Φ̄Γ−

)
χ

Vortex: Φ(r , ϕ) = e iϕ|Φ(r)|
[Jackiw-Rossi, Ivanov, Read-Green]

has a majorana zeromode.
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Note: Ising anyons are a special case

(not universal for quantum computation).

Lesson: All we need to do to realize non-Abelian (Ising) statistics
is to find solitons with normalizable majorana zeromodes.



Majorana hedgehogs
Consider a 3+1d system with a global SO(3) symmetry
broken by an adjoint scalar vev

〈ΦAΦA〉 = v 2 A = 1, 2, 3.

Couple to a real 8-component spinor
(two majorana doublets of SU(2) ' SO(3)):

Hfermions = iχT
(
γ i∂i + λΦAΓA

)
χ

〈Φ〉 gaps fermions, mbulk ∼ λv .

Hedgehog: ΦA = r̂Aφ(r) φ(r)
r→∞∼ v , φ(r)

r→0→ 0
has a majorana zeromode.

Aside on motivation from topological insulators with
superconductors attached: [Fu-Kane 08, Teo-Kane 09, Wilczek, unpublished]

Φ1 + iΦ2 = supercond. order parameter (zero at vortex)

Φ3 = Dirac mass (changes sign at bdy of TI)
m<0

m>0
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Problems of majorana hedgehogs
The hedgehogs are not quite particles: spatial var. of Φ is extra data.
Minimal data for topology:
preimage under Φ of north pole and nearby point

−→ ribbon between hedgehog pairs.

[Freedman et al, 1005.0583] Φ Φ

“projective ribbon statistics”

Observation: Variation of Φ costs energy.
Hedgehogs are not finite-energy excitations

E = H[Φhedgehog] ∼
∫ L

0
d3x

(
~∇ΦA · ~∇ΦA + ...

)
∼ v 2L

(like global SO(2) vortex in 2+1 dims).

Configurations with zero total hedgehog number have finite energy

But: Veff(R) ∼
∫ R

0 r 2dr ·
(
φ
r

)2
∼ Rv 2.

linear confinement.
R

Not so good for adiabatic motion.
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Deconfined majorana solitons in 3 + 1 dims?

Two apparently-different routes to models with
deconfined majorana particles:

I Gauge the SU(2) symmetry

I Disorder the 〈Φ〉. (Zero stiffness, no gradient energy.)



Gauge the SU(2)
• SU(2)

〈Φ〉∈adj→ U(1)
• Sol’n with ΦA = r̂Aφ(r) → ‘t Hooft-Polyakov monopole:

AA
i = εijAr̂ jA(r), AA

0 = 0

φ(r)
r→∞∼ v , A(r)

r→∞∼ 1

r
=⇒ DiΦ

r→∞→ 0.

• carries magnetic charge = hedgehog #
=⇒ magnetic coulomb force F ∼ qmq′m

r2 (falls off!)

• Lfermions = χ†i σ̄µDµχ−
1

2
λχ∨~τ · ~Φχ+ h.c .

χαa Weyl ∈ (1, 2, 2) of SU(2)L × SU(2)R × SU(2)gauge

χ∨ ≡ χT iσ2iτ2 ∈ (1, 2̄, 2̄)

• Two independent mass scales:
mW = gv , and the mass of the fermion λv .
[ • Does not exist: Witten anomaly [Witten 1982] ]
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Majorana zeromode

Momentarily treat A,Φ as classical background fields:
Dirac equation

0 = δχ̄Sfermion = −i σ̄µDµχ+ λ†iσ2Φ · τ iτ2χ? .

ansatz from [Jackiw-Rebbi, 1976], with reality conditions.
χαa = iτ2

αag(r) (α: spin index, a: SU(2) doublet index).

(∂i + 2r̂iA)g + iλφr̂ig
? = 0.

rephasing χ =⇒ λ > 0 WLOG

g(r) = ce−πi/4e−
∫ r (λφ−2A)
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c is a real constant.
phase of the normalizable

solution determined by normalizability at r →∞.



Witten anomaly

∫
[Dχ]e iSfermions[χ,A,Φ] ≡ e iΓ[A,Φ] × non-universal stuff

Fermion determinant represents π4(SU(2)) = ZZ2 :

(?) e iΓ[Ag ,Φg ] = (−1)[g ]e iΓ[A,Φ] .

But A,Ag are continuously connected:

=⇒
∫

[DADΦ]e iΓ[A,Φ] × (anything gauge invariant) = 0

One argument for (?): Embed the theory in an SU(3) gauge
theory with a perturbative gauge anomaly
[Witten:1983,Elitzur:1984,Klinkhamer:1990].
Calculate the variation of the fermion measure between 1 and g by
integrating the SU(3) anomaly.
Claim: The addition of the adjoint scalar Φ doesn’t change this.



Witten anomaly with adjoint scalar

More explicitly: consider the (perturbatively anomalous) SU(3) gauge
theory with
• an adjoint scalar Φ̃,
• an SU(3) triplet of Weyl fermions χ̃
• an SU(3) triplet of scalars Υ,
with the coupling

LSU(3) ⊃ χ̃T
a iσ2ΥbεabcΦ̃cd χ̃d ,

a = 1, 2, 3 is a triplet index.
〈Υ〉 = λ breaks the SU(3) down to SU(2), is the Yukawa coupling.
The form of the perturbative SU(3) anomaly is unaffected by the addition of

scalars.

Γ[A,Φ] is a smooth functional for invertible Φ
(integrate out massive fermions)

Ineffable: naive ΓWZW [A,Φ] = 0 for SU(2).



Canceling the Witten anomaly

S [χ,Φ,A]→ S [χ,Φ,A] + Γ[Φ,A]

But: if Φ = 0 anywhere, Γ is ill-defined. (e.g. core of monopole.)

Requires UV completion.
Important point: presence of fermion zms is a UV sensitive question.

L2 fermions = χI†i σ̄µDµχI − λIJχ∨I ~τ · ~ΦχJ −mIJχ∨I χJ + h.c .

χIαa a pair of (left-handed) Weyl doublets of SU(2):
I = 1, 2 a flavor index, α = 1, 2: spin, a = 1, 2 gauge. 23 complex fermions

Same spectrum as [Jackiw-Rebbi 76] but more general couplings.

Three mass scales:
the mass of the W -bosons, mW = gv ,
and the masses of the two Weyl fermions λ1,2v

gv

E

λ

λ 1

v

v

2

For λ1v � mW � λ2v

large window of energies with same bulk spectrum as above.



Relation to Jackiw-Rebbi model

λ is symmetric, λIJ = λJI by Fermi statistics.
By field redefinitions, can diagonalize λ with real eigenvalues λ1,2.
Phase of m is physical.
m = m†, preserves a CP symmetry χ 7→ iσ2iτ2χ?.

Jackiw-Rebbi case: λ1 = λ2 ≡ λ0 =⇒ extra U(1) symmetry:

χ1 7→ e iθχ1, χ2 7→ e−iθχ2 (in basis where λ =

(
0 λ0

λ0 0

)
)

Ψ ≡
(

χ1

χ?2iτ2iσ2

)
. λ0 ≡ λR0 + iλI0

L2fermions = Ψ̄i /DΨ− Ψ̄
(
λR0 + iλI0γ

5
)
~τ · ~ΦΨ + mΨ̄Ψ.

For m = 0, JR found in this model a complex zeromode of the
monopole.
Quantizing this mode makes the monopole into a pair of bosons of
charge ±e/2 (under the ‘extra’ U(1)).
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Fermion zeromodes in the two-doublet model

For mDirac = 0:
In the basis where λ is diagonal with real evals λ1,2, zeromode equations for

χ1,2 decouple. Two real solutions, like JR:

χIαa(r) = iτ2
αagI , gI = cI e

−πi/4e−
∫ r (λIφ−2A) .

For mDirac 6= 0:
Ansatz which decomposes χ ∈ (2, 2) into irreps of the unbroken

SU(2) ⊂ SU(2)gauge × SU(2)spin:

χaαI = iτ2
aαgI + i

(
τ2τ i

)
aα

g i
I .

Guess: ~g = r̂ gr (r). Dirac equation becomes:

0 = i ~∇g − 2i r̂Ag − λ†g?φr̂ −m†~g?

0 = i ~∇ · ~g + 2iA~g · r̂ + λ†~g? · r̂φ+ m†g? .



Conclusions about zeromodes

• First assume m = m†.
For
√
λ1λ2v < m, both modes are non-normalizable.

(Else, both normalizable.)

Check: detMbulk =
(
λ1λ2v

2 −m2
)2 → 0 precisely at marginal normalizibility.

Sizes of zms can be varied independently by λ1,2.

The zeromode wavefunctions involve products of exponentials of
the form emre−λvr , one might have thought (pantingly) that one
zeromode would become non-normalizable, e.g. for
λ1v < m < λ2v .
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This hope is not realized.

Remnant: sometimes zm profile is ring-like: −→

• For m 6= m† no zero-energy solutions.



No-go arguments
1. If we gauge away or disorder the Station Q ribbon, the
configuration space has π1(Cn) = Sn.
2. Rough sketch of argument for inevitability of Witten anomaly:

mod two
Witten
anomaly

majorana number

of monopole
chiral anomaly

In a Witten-anomalous theory, (−1)F = e iπj
axial
0 = e iπτ

3
is a gauge

symmetry. [Goldstone, 83]

=⇒ chiral anomaly mod two is a gauge anomaly.
(In a normal theory: ψL → ψ̄R .

Here: ψL →vacuum.)

indIR /D[monopole]
?
=

∮
S2
∞

~∇ ·~jaxial

[Callias 78]: indC /D
[Santos-Nishida-Chamon-Mudry, 09]: real index for vortex in 2d



5d model

Some theories are only realizable as the boundary of a
higher-dimensional model. [Nielsen-Ninomiya, Kaplan]

e.g.: domain-wall fermions in lattice QCD,

single dirac cones on surface of a topological insulator

Consider SU(2) gauge theory in 4+1 dimensions
with a Dirac fermion doublet and adjoint Higgs.
On a circle: fourth spatial dimension y ' y + 2πR.

y

MHyL

Kink of M(r)
supports a 4d massless Weyl fermion.

Bad features: 5d; needs UV
completion (lattice, strings); kinks can annihilate.
Mass scales: MW , R−1, the Dirac mass m,
the inverse thickness of the kink, extreme UV cutoff

At energies E � 1/R, this model reduces to the two-doublet theory above.



Majorana monopole strings

q ∈ π2(S2) supports monopole strings.
(3d particles when stretched along y).

Intersections between monopole strings
and domain walls of 5d mass
→ localized Majorana zeromodes.

y

M>0 M<0

space

• the two Majorana modes need not pair up.
For m� R−1, their
wavefunction overlap is exponentially small.
• low-energy
braiding always exchanges majoranas in pairs

y

space

M>0 M<0

• dyon rotor → 1+1 XY model along string.
decoherence to local basis or linear
confinement from monopole string tension:



Disordering the SU(2)

Imagine a state with hedgehogs but zero stiffness (no LRO).
Effective field theories for such states are usefully studied using
“slave particle” techniques
(successful in similar problem of spin liquid states).
Result: emergent U(1) gauge theory, under which the defects are
magnetically charged.
Again requires UV completion.

One way to do it: SU(2) gauge theory with a Weyl doublet.

Another attempt [Freedman, Hastings, Nayak, Qi, 1107.2731]: a lattice model
(majorana fermions with hopping amplitudes determined by a quantum dimer

model configuration)

They argue for a majorana zeromode on the defect.
But: gapless bulk fermions.

Reduces to two-doublet model with m = 0, λ1 6= 0, λ2 = 0!



Other possible loopholes?

I What if we just gauge the U(1) ⊂ SU(2)?
Still linear tension.

I What if the 5th dimension ends?
For some boundary conditions: gapless 4d mode [Station Q].

I Lorentz-breaking fermion kinetic terms [Tong]?
Still anomalous?

Conclusion: It would be nice to tighten the no-go statement
(prove the CalliasIR index theorem, understand the functional Γ)

and it will be interesting to see what other physics has to come in
to save the world from non-Abelian statistics in 3+1 dimensions.

Final positive comment: These issues are important for
understanding possible generalizations of the notion of flux
attachment from 2+1 to 3+1.
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The end

Thanks for listening.


