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1. Brain-warmer.

Show that we did the right thing in the numerator of the electron self-energy:
use the Clifford algebra to show that

~H (xp + mo) Y = —2xpP + 4my.

2. An example of renormalization in classical physics.

Consider a classical field in D + 2 spacetime dimensions coupled to an impurity
(or defect or brane) in D dimensions, located at X = («*,0,0). Suppose the
field has a self-interaction which is localized on the defect. For definiteness and
calculability, we'll consider the simple (quadratic) action

Slol = [ 72 (G0,0(X)0%(X) + 97 (Y)).

(a) What is the mass dimension of the coupling g? This is why I picked a
codimension'-two defect.

(b) Find the equation of motion for ¢. Where have you seen an equation like
this before?

(c) We will study the propagator for the field in a mixed representation:

Gi(, ) = (ks 2)d(—k, ) = / 0Pz M (o2, 2)0(0, )

— 1.e. we go to momentum space in the directions in which translation sym-
metry is preserved by the defect. Find and evaluate the diagrams contribut-
ing to Gy (,y) in terms of the free propagator D (z,y) = (¢(k, )p(—k, y)) 4—p-
(We will not need the full form of Dy(x,y).) Sum the series.

(d) You should find that your answer to part 2c¢ depends on Dg(0,0), which
is divergent. This divergence arises from the fact that we are treating the

defect as infinitely thin, as a pointlike object — the §?-function in the in-
teraction involves arbitrarily short wavelengths. In general, as usual, we

' An impurity whose position requires specification of p coordinates has codimension p.
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must really be agnostic about the short-distance structure of things. To re-
flect this, we introduce a regulator. For example, we can replace the fourier
representation of Dy (0,0) with the cutoff version

eiq-O

k2 +q*

A
Dy(0,0;A) = / d’q
0

Do the integral.

(e) Now we renormalize. We will let the bare coupling g (the one which appears
in the Lagrangian, and in the series from part 2c¢) depend on the cutoff
g = g(A). We wish to eliminate g(A) in our expressions in favor of some
measurable quantity. To do this, we impose a renormalization condition:
choose some reference scale u, and demand that

G, y) = Dy(a,y) — g(12) Dyu(,0) D, (0, ). (1)

This equation defines g(u), which we regard as a physical quantity. Show
that (1) is satisfied if we let g(A) = g(u)Z, with

(f) Find the beta function for g,

By(g) = udii—(um,

and solve the resulting RG equation for g(u) in terms of some initial condi-
tion g(uo). Does the coupling get weaker or stronger in the UV?

3. Pauli-Villars practice.
Consider a field theory of two scalar fields with

1 1 1 1
L= —§¢D¢ — §m2¢2 — §<I>D<I> — §M2<I>2 — g¢p®? + counterterms.

Compute the one-loop contribution to the self-energy of ®. Use a Pauli-Villars
regulator — introduce a second copy of the ¢ field of mass A with the wrong-sign
propagator.

Determine the counterterms required to impose that the & propagator has a
pole at p? = M? with residue 1.



