
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2020
Assignment 2

Due 12:30pm Monday, January 27, 2020

Note that this is two weeks’ worth of homework.

1. An example of renormalization in classical physics.

Consider a classical field in D + 2 spacetime dimensions coupled to an impurity

(or defect or brane) in D dimensions, located at X = (xµ, 0, 0). Suppose the

field has a self-interaction which is localized on the defect. For definiteness and

calculability, we’ll consider the simple (quadratic) action

S[φ] =

∫
dD+2X

(
1

2
∂µφ(X)∂µφ(X) + gδ2(~x⊥)φ2(X)

)
.

(a) What is the mass dimension of the coupling g? This is why I picked a

codimension1-two defect.

(b) Find the equation of motion for φ. Where have you seen an equation like

this before?

(c) We will study the propagator for the field in a mixed representation:

Gk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉 =

∫
dDz eikµz

µ 〈φ(z, x)φ(0, y)〉

– i.e. we go to momentum space in the directions in which translation sym-

metry is preserved by the defect. Find and evaluate the diagrams contribut-

ing toGk(x, y) in terms of the free propagatorDk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉g=0.

(We will not need the full form of Dk(x, y).) Sum the series.

(d) You should find that your answer to part 1c depends on Dk(0, 0), which

is divergent. This divergence arises from the fact that we are treating the

defect as infinitely thin, as a pointlike object – the δ2-function in the in-

teraction involves arbitrarily short wavelengths. In general, as usual, we

must really be agnostic about the short-distance structure of things. To re-

flect this, we introduce a regulator. For example, we can replace the fourier

representation of Dk(0, 0) with the cutoff version

Dk(0, 0; Λ) =

∫ Λ

0

d̄2q
eiq·0

k2 + q2
. (1)

Do the integral.

1An object whose position requires specification of p coordinates has codimension p.
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(e) Now we renormalize. We will let the bare coupling g (the one which appears

in the Lagrangian, and in the series from part 1c) depend on the cutoff

g = g(Λ). We wish to eliminate g(Λ) in our expressions in favor of some

measurable quantity. To do this, we impose a renormalization condition:

choose some reference scale µ, and demand that

Gµ(x, y)
!

= Dµ(x, y)− g(µ)Dµ(x, 0)Dµ(0, y). (2)

This equation defines g(µ), which we regard as a physical quantity. Show

that (2) is satisfied if we let the bare coupling be g(Λ) = g(µ)Z, with

Z =
1

1− g(µ)
4π

ln
(

Λ2

µ2

) .
(f) Find the beta function for g,

βg(g) ≡ µ
dg(µ)

dµ
,

and solve the resulting RG equation for g(µ) in terms of some initial condi-

tion g(µ0). Does the coupling get weaker or stronger in the UV?

2. Vacuum energy from the propagator.

Consider a free scalar field with

S =

∫
dd+1x

(
1

2
∂µφ∂

µφ− 1

2
m2φ2

)
.

(a) (Brain-warmer) Find the Hamiltonian.

(b) Reproduce the formal expression for the vacuum energy

〈0|H|0〉 = V

∫
d̄dk

1

2
~ω~k

using the two point function

〈0|φ(x)2 |0〉 = 〈0|φ(0)φ(0)|0〉 = lim
~x,t→0

〈0|φ(x)φ(0) |0〉

and its derivatives. (V is the volume of space.)

Thus, the vacuum energy can be described as a loop diagram of the form

, where the × represents the insertion of the operator H.
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3. Propagator corrections in a solvable field theory.

Consider a theory of a scalar field in D dimensions with action

S = S0 + S1

where

S0 =

∫
dDx

1

2

(
∂µφ∂

µφ−m2
0φ

2
)

and

S1 = −
∫
dDx

1

2
δm2φ2 .

We have artificially decomposed the mass term into two parts. We will do per-

turbation theory in small δm2, treating S1 as an ‘interaction’ term. We wish to

show that the organization of perturbation theory that we’ve seen lecture will

correctly reassemble the mass term.

(a) Write down all the Feynman rules for this perturbation theory.

(b) Determine the 1PI two-point function in this model, defined by

iΣ ≡
∑

(all 1PI diagrams with two nubbins) .

(c) Show that the (geometric) summation of the propagator corrections cor-

rectly produces the propagator that you would have used had we not split

up m2
0 + δm2.

4. Meson scattering. Now consider the Yukawa theory with fermions, with

L = Ψ̄
(
i/∂ −m

)
Ψ +

1

2
∂µφ∂

µφ− 1

2
M2φ2 + Lint

and Lint = gΨ̄Ψφ.

(a) Draw the Feynman diagram(s) which give(s) the leading contribution to the

process φφ→ φφ.

(b) Derive the correct sign of the amplitude by considering the relevant ma-

trix elements of powers of the interaction hamiltonian. Compare with the

Feynman rules for fermions.

(c) Evaluate the diagram in terms of a spinor trace and a momentum integral.

Do not do the momentum integral. Suppose that the integral is cutoff at

large k by some cutoff Λ. Estimate the dependence on Λ, in particular in

D = 4.
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(d) What counterterm is required to renormalize this interaction?

(e) Do you need a counterterm of the form δ3φ
3 in this theory?

5. Electron-photon scattering at low energy. [This is an optional bonus prob-

lem for those of you who wish to experience some of the glory of tree-level QED.]

Consider the process eγ → eγ in QED at leading order.

(a) Draw and evaluate the two diagrams.

(b) Find 1
4

∑
spins/polarizations |M|2.

(c) Construct the two-body final-state phase space measure in the limit where

the photon frequency is ω � m (the electron mass), in the rest frame of the

electron. I suggest the following kinematical variables:

p1 = (ω, 0, 0, ω), p2 = (m, 0, 0, 0), p4 = (ω′, ω′ sin θ, 0, ω′ cos θ), p3 = p1+p2−p4 = (E ′, p′)

for the incoming photon, incoming electron, outgoing photon and outgoing

electron respectively.

(d) Find the differential cross section dσ
d cos θ

as a function of ω, θ,m. (The ex-

pression can be prettified by using the on-shell condition p2
3 = m2 to relate

ω′ to ω, θ. It is named after Klein and Nishina.) Compare to experiment.

(e) Show that the limit E � m gives the (Thomson) scattering cross section

for classical electromagnetic radiation from a free electron.

6. Brain-cooler.

Show that we did the right thing in the numerator of the electron self-energy:

use the Clifford algebra to show that

γµ
(
x/p+m0

)
γµ = −2x/p+ 4m0.
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