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1. Brain-warmer. Prove the Gordon identities

ū2 (qνσµν)u1 = iū2 ((p1 + p2)µ − (m1 +m2)γµ)u1

and

ū2 ((p1 + p2)
νσµν)u1 = iū2 ((p2 − p1)µ − (m2 −m1)γµ)u1

where q ≡ p2 − p1 and /p1u1 = m1u1, ū2/p2 = m2ū2, using the definitions and the

Clifford algebra.

2. Pauli-Villars practice.

Consider a field theory of two scalar fields with

L = −1

2
φ2φ− 1

2
m2φ2 − 1

2
Φ2Φ− 1

2
M2Φ2 − gφΦ2 + counterterms.

Compute the one-loop contribution to the self-energy of Φ. Use a Pauli-Villars

regulator – introduce a second copy of the φ field of mass Λ with the wrong-sign

propagator.

Determine the counterterms required to impose that the Φ propagator has a

pole at p2 = M2 with residue 1.

3. Bosons have worse UV behavior than fermions.

Consider the Yukawa theory

S[φ, ψ] = −
∫
dDx

(
1

2
φ (2 +mφ)φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
+counterterms.

(a) Show that the superficial degree of divergence for a diagram A with BE

external scalars and FE external fermions is

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
(1)

where Vg and vy are the number of φ4 and φψ̄ψ vertices respectively.

All the discussion below is about one loop diagrams.
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(b) Draw the diagrams contributing to the self energy of both the scalar and

the spinor in the Yukawa theory.

(c) Find the superficial degree of divergence for the scalar self-energy amplitude

and the spinor self-energy amplitude.

(d) In the case of D = 3 + 1 spacetime dimensions, show that (with a cutoff

on the Euclidean momenta) the spinor self-energy is actually only loga-

rithmically divergent. (This type of thing is one reason for the adjective

‘superficial’.)

Hint: the amplitude can be parametrized as follows: if the external momen-

tum is pµ, it is

M(p) = A(p2)/p+B(p2).

Show that B(p2) vanishes when mψ = 0.

4. Dimension-dependence of dimensions of couplings.

(a) In what number of space dimensions does a four-fermion interaction such as

Gψ̄ψψ̄ψ have a chance to be renormalizable? Assume Lorentz invariance.

[optional] Generalize the formula (14) for DA to include a number VG of

four-fermion vertices.

(b) If we violate Lorentz invariance the story changes. Consider a non-relativistic

theory with kinetic terms of the form
∫
dtddx

(
ψ† (i∂t −D∇2)ψ

)
. (Here D

is a dimensionful constant. In a relativistic theory we relate dimensions of

time and space by setting the speed of light to one; here, there is no such

thing, and we can choose units to set D to one.) For what number of space

dimensions might the four-fermion coupling be renormalizable?

(c) In the previous example, the scale transformation preserving the kinetic

terms acted by t→ λ2t, x→ λx. More generally, the relative scaling of space

and time is called the dynamical exponent z (z = 2 in the previous example).

Suppose that the kinetic terms are first order in time and quadratic in the

fields. Ignoring difficulties of writing local quadratic spatial kinetic terms,

what is the relationship between d and z which gives scale invariant quartic

interactions? What if the kinetic terms are second order in time (as for

scalar fields)?

5. The magnetic moment of a Dirac fermion. [This problem is optional, but

highly recommended.] In this problem we consider the hamiltonian density

hI = qΨ̄γµΨAµ .
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As we’ve discussed, this describes a local, Lorentz invariant, and gauge invariant

interaction between a Dirac fermion field Ψ and a vector potential Aµ. In this

problem we will treat the vector potential, representing the electromagnetic field,

as a fixed, classical background field.

Define single-particle states of the Dirac field by 〈0|Ψ(x) |~p, s〉 = e−ipxus(p). We

wish to show that these particles have a magnetic dipole moment, in the sense that

in their rest frame, their (single-particle) hamiltonian has a term hNR 3 µB ~S · ~B
where ~S = 1

2
~σ is the particle’s spin operator.

(a) q is a real number. What is required of Aµ for HI =
∫
d3xhI to be hermitian?

(b) How must Aµ transform under parity P and charge conjugation C in order

for HI to be invariant? How do the electric and magnetic fields transform?

Show that this allows for a magnetic dipole moment but not an electric

dipole moment.

(c) Show that in the non-relativistic limit

ū(p′)γµνu′(p)Fµν = aξ†σ · ~Bξ′

for some constant a (find a). Recall that γµν ≡ 1
2
[γµ, γν ]. Here u, u′ are

positive-energy solutions of the Dirac equation with mass m and

u =

(√
σ · pξ√
σ̄ · pξ

)
, u′ =

(√
σ · p′ξ′√
σ̄ · p′ξ′

)
.

(d) Suppose that Aµ describes a magnetic field ~B which is uniform in space and

time.

Show that in the non-relativistic limit

〈~p′, s′|HI |~p, s〉 = /δ
3

(~p− ~p′)h(ξ, ξ′, ~B)

and find the function h(ξ, ξ′, ~B). You may wish to use the Gordon identity.

Rewrite the result in terms of single-particle states with non-relativistic

normalization (i.e. 〈~p|~p′〉NR = /δ
3
(p − p′)). Interpret h as a non-relativistic

hamiltonian term saying that the gyromagnetic ratio of the electron is −g |q|
2m

with g = 2.

(e) How does the result change if we add the term

∆H =
c

M
Ψ̄Fµν [γ

µ, γν ]Ψ ?
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