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1. Brainwarmer: Fundamental theorem of functional integrals.

(a) Show that ∫ ∞
−∞

dxe−
1
2
ax2+jx =

√
2π

a
e
j2

2a .

[Hint: square the integral and go to polar coordinates.]

(b) Consider a collection of variables xi, i = 1..N and a hermitian matrix aij.

Show that ∫ N∏
i=1

dxie
− 1

2
xiaijxj+J

ixi =
(2π)N/2√

det a
e

1
2
Jia−1

ij J
j

.

(Summation convention in effect, as always.)

[Hint: change variables to diagonalize a. Recall that det a =
∏
ai, where ai

are the eigenvalues of a.]

(c) Consider a Gaussian field Q, governed by the (quadratic) euclidean action

in one dimension:

S[x] =

∫
dt

1

2

(
Q̇2 + Ω2Q2

)
.

Show that 〈
e−

∫
dsJ(s)Q(s)

〉
Q

= N e+
1
2

∫
dsdtJ(s)G(s,t)J(t)

where G is the (Feynman) Green’s function for Q, satisfying:(
−∂2s + Ω2

)
G(s, t) = δ(s− t).

Here N is a normalization factor which is independent of J . Note the

similarity with the previous problem, under the replacement

a = −∂2s + Ω2, a−1 = G.

(d) Consider a Gaussian field φ, governed by the (quadratic) euclidean action

in D dimensions

S[x] =

∫
dt

1

2

(
∂µφ∂

µφ+m2φ2
)
.
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Show that 〈
e−

∫
dDxJ(x)φ(x)

〉
φ

= N e+
1
2

∫
dDxdDyJ(x)G(x,y)J(y)

where G is the (Feynman) Green’s function for φ, satisfying:(
−∂µ∂µ +m2

)
G(x, y) = δD(x− y).

2. Another consequence of unitarity of the S matrix.

(a) Show that unitarity of S, S†S = 1 = SS†, implies that the transition matrix

is normal:

T T † = T †T . (1)

(b) What does this mean for the amplitudes Mαβ (defined as usual by Tαβ =
/δ(pα − pβ)Mαβ)?

(c) The probability of a transition from α to β is

Pα→β = |Sβα|2 = V T/δ(pα − pβ)|Mαβ|2

which is IR divergent. More useful is the transition rate per unit time per

unit volume:

Γα→β ≡
Pα→β
V T

.

Show that the the total decay rate of the state α is

Γα ≡
∫
dβΓα→β = 2ImMαα.

(d) Consider an ensemble of states pα evolving according to the evolution rule

∂tpα = −pαΓα +

∫
dβpβΓβ→α.

S[p] ≡ −
∫
dαpα ln pα is the Shannon entropy of the distribution. Show that

dS

dt
≥ 0

as a consequence of (1). This is a version of the Boltzmann H-theorem.

(e) [Bonus] Notice that we are doing something weird in the previous part by

using classical probabilities. This is a special case; more generally, we should

describe such an ensemble by a density matrix ραβ. Generalize the result of

the previous part appropriately.
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3. Schwinger-Dyson equations.

Consider the path integral ∫
[Dφ]eiS[φ].

Using the fact that the integration measure is independent of the choice of field

variable, we have

0 =

∫
[Dφ]

δ

δφ(x)
(anything)

(as long as ‘anything’ doesn’t grow at large φ). So this equation says that we can

integrate by parts in the functional integral.

(Why is this true? As always when questions about functional calculus arise,

you should think of spacetime as discrete and hence the path integral measure

as simply the product of integrals of the field value at each spacetime point,∫
[Dφ] ≡

∫ ∏
x dφ(x), this is just the statement that

0 =

∫
dφx

∂

∂φx
(anything)

with φx ≡ φ(x), i.e. that we can integrate by parts in an ordinary integral if there

is no boundary of the integration region.)

This trivial-seeming set of equations (we get to pick the ‘anything’) can be quite

useful and are called Schwinger-Dyson equations. (Be warned that these equa-

tions are sometimes also called Ward identities.) Unlike many of the other things

we’ve discussed, they are true non-perturbatively, i.e. are really true, even at

finite coupling. They provide a quantum implementation of the equations of

motion.

(a) Evaluate the RHS of

0 =

∫
[Dφ]

δ

δφ(x)

(
φ(y)eiS[φ]

)
to conclude that 〈

T δS

δφ(x)
φ(y)

〉
= +iδ(x− y). (2)

(b) These Schwinger-Dyson equations are true in interacting field theories; to

get some practice with them we consider here a free theory. Evaluate (2)

for the case of a free massive scalar field to show that the (two-point) time-

ordered correlation functions of φ satisfy the equations of motion, most of
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the time. That is: the equations of motion are satisfied away from other

operator insertions:(
+2x +m2

)
〈T φ(x)φ(y)〉 = −iδ(x− y), (3)

with 2x ≡ ∂xµ∂
xµ .

(c) Find the generalization of (3) satisfied by (time-ordered) three-point func-

tions of the free field φ.

(d) Remind yourself that last quarter you (probably) derived the equation (2)

(for a free theory) more arduously, from a more canonical (i.e. Hamiltonian)

point of view, by considering what happens when you act with the wave

operator +2x +m2 on the time-ordered two-point function.

[Hints: Use the canonical equal-time commutation relations:

[φ(~x), φ(~y)] = 0, [∂x0φ(~x), φ(~y)] = −iδD−1(~x− ~y).

Do not neglect the fact that ∂tθ(t) = δ(t): the time derivatives act on the

time-ordering symbol!]
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