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1. An example of the power of the RG logic.

Consider quantum mechanics of a single particle in d dimensions, with Hamilto-

nian

H =
p2

2m
+ V (q), [q, p] = i.

Consider the (say, euclidean) path integral for this problem,

Z =

∫
[dq]e−S[q], S[q] =

∫
dt
(m

2
q̇2 − V (q)

)
.

To be more precise, with periodic boundary conditions, Z(β) =
∫
q(t+β)=q(t)

[dq]e−S[q] =

tre−βH is the thermal partition function. Alternatively, instead of Z, we could

consider the Green’s function G(q1, t1; q2, t2) =
∫ q(t2)=q2
q(t1)=q1

[dq]e−S[q].

Working by analogy with our treatment of field theory, show that any smooth1

potential V is a relevant perturbation of the free particle, i.e. the Gaussian fixed

point with H = p2

2m
.

Hint: change variables to φ(t) ≡
√
mq(t).

Use this to explain in words why the high energy asymptotics of the density of

states

N(E) ≡ {# of eigenvalues of H less than E}
is given by the Weyl formula (even for V (q) 6= 0):

N(E) = Ed/2KdL
d + ...

where Kd = Ωd−1

(2π)d
as usual, and L is the linear size of the box in which we put

the particle (an IR cutoff).

Hint: we can represent the density of states by a path integral using an inverse

Laplace transform:

tr
1

ω −H
=

∫
dβ eβωZ(β)

and the relation

Im
1

ω + iε−H
= πδ(ω −H).

1Some singular potentials are also relevant perturbations. If V (q) ∼ q−α, how big can α be for

my statement to remain true? Thanks to Brian Vermilyea for reminding me that a singular enough

potential will cause trouble.
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2. An application of effective field theory in quantum mechanics.

Consider a model of two canonical quantum variables ([x,px] = i = [y,py], 0 =

[x,py] = [x,y], etc) with Hamiltonian

H = p2
x + p2

y + λx2y2.

(This is similar to the degenerate limit of the model studied in lecture with two

QM variables where both natural frequencies are taken to zero.)

(a) Based on a semiclassical analysis, would you think that the spectrum is

discrete?

(b) Study large, fixed x near y = 0. We will treat x as the slow (= low-energy)

variable, while y gets a large restoring force from the background x value.

Solve the y dynamics, and find the groundstate energy as a function of x:

Veff(x) = Eg.s. of y (x).

(c) The result is not analytic in x at x = 0. Why?

(d) Is the spectrum of the resulting 1d model with

Heff = p2
x + Veff(x)

discrete? Is this description valid in the regime which matters for the semi-

classical analysis?

[Bonus: determine the spectrum of Heff.]

3. RG analysis of less-symmetric spin systems.

Suppose that we break the rotation symmetry of the O(n) model to the subgroup

of π/2 rotations, i.e. the cubic symmetry, (for example, for n = 2, (s1, s2) →
(s2,−s1).) If the spins live on the cubic lattice, a spin-orbit coupling could do

this.

(a) Don’t look at the next part of the problem yet! What functions of an n-

vector φa that are invariant under π/2 rotations, but not general rotations?

...

...

...
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...
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...

...

...

...

...

...

...

...

...

...

...
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(b) Show that in addition to the usual O(n)-symmetric interaction∫
ddx

n∑
a,b=1

uφ2
aφ

2
b ,

the LG free energy should include a term of the form∫
ddx

n∑
a=1

vφ4
a.

Argue that this is the only new term (preserving cubic symmetry but not the

full O(n) symmetry) which can be a relevant perturbation of the Gaussian

fixed point near d = 4.

(c) Treating O(u) = O(v) = O(ε), redo the analysis of the running couplings in

d = 4− ε dimensions to derive beta functions for u and v up to corrections

of order O(u3) = O(v2u) = ... = O(ε3).

(d) Your answer to the previous part will be of the form

−b∂bu = −εu+ A1u
2 + A2uv + A3v

2 +O(u3)

−b∂bv = −εv +B1u
2 +B2uv +B3v

2 +O(u3). (1)

You should find that A3 = B1 = 0. Find four fixed points:

• The gaussian fixed point.

• A fixed point where only u 6= 0.

• A fixed point where only v 6= 0. Describe the physics of this fixed point.

(Hint: the action is a sum of n terms.)

• A fixed point where both (u, v) are nonzero.

(In every case, the assumption of u ∼ v ∼ ε is self-consistent.)

(e) Analyze the stability of these fixed points (by computing the matrix of

derivatives of the beta functions at each fixed point). Draw the phase dia-

gram. Which fixed point dominates the critical behavior? You will want to

consider different cases depending on whether n > 4 or n < 4.

(f) When n > 4 you may find that v wants to become negative. This means that

the effective potential for m becomes unbounded, within our approximation.

What have we left out that will restore sanity? What does this mean for

the order of the phase transition? (Notice that mean field theory predicts a

continuous transition, so any change in this conclusion is a dramatic effect

of the fluctuations, more dramatic than just changing the values of critical

exponents by a little.)
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4. O(N) model at large N . In lecture we studied the O(N) model in an expansion

in ε = 4 − D. When N is large, there is another small parameter in which to

expand. We’ll see that the results are consistent with the ε expansion. It is also

an example which illustrates the manipulations we did in describing the BCS

phenomenon.

Consider the (Euclidean) partition function for an N -vector of scalar fields in D

dimensions:

Z =

∫
[dφ]eiS[φ], S[~φ] =

∫
dDx

(
∂µφ

a∂µφa − rφaφa − g

N
(φaφa)2

)
.

(a) At the free fixed point, what is the dimension of the coupling g as a func-

tion of the number of spacetime dimensions D? Show that it is classically

marginal in D = 4, so that this action is (classically) scale invariant.

(b) [optional] Show that the definition above of u = g/N is a good idea if we

want to take N →∞, at fixed g. Do this by considering the N -dependence

of diagrams which contribute to, say, the free energy, and demanding that

in the large-N limit the interaction terms contribute with the same power

of N as the leading term.

(c) Analyze, at large N , the critical behavior of the model as r is varied. You’ll

need to consider separately the regimes D > 4, D = 4, 2 < D < 4, D ≤ 2.

Here are the steps: first use the Hubbard-Stratonovich trick to replace φ4 by

σφ2 + σ2 (up to factors) in the action, where σ is a new scalar field2. Then

integrate out the φ fields. Find the saddle point equation for σ; argue that

the saddle point dominates the integral for large N . Regulate the integrals

in a convenient way. Find a translation invariant saddle point (i.e. where σ

is constant). Plug the saddle point configuration of σ back into the action

for φ and describe the resulting dynamics.

(d) [bonus] Compute the correlation-length critical exponent ν at leading order

in large N . Compare with the epsilon expansion results.

5. Gross-Neveu model. [optional] This problem uses very similar steps to the

previous one, but leads to very different physical conclusions. I include it here to

emphasize the many applications of this method.

2To be more explicit, use (a path-integral version of) the identity

euφ
4

=
1√
πu

∫ ∞
−∞

dσ e−σ
2/u−2φ2σ.
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Consider the partition function for an N -vector of fermionic spinor fields in D

dimensions:

Z =

∫
[dψdψ̄]eiS[ψ], S[~ψ] =

∫
dDx

(
ψ̄ai/∂ψa − g

N

(
ψ̄aψa

)2
)
.

(a) At the free fixed point, what is the dimension of the coupling g as a func-

tion of the number of spacetime dimensions D? Show that it is classically

marginal in D = 2, so that this action is (classically) scale invariant.

(b) We will show that this model in D = 2 exhibits dimensional transmutation

in the form of a dynamically generated mass gap. Here are the steps: first

use the Hubbard-Stratonovich trick to replace ψ4 by σψ2 +σ2 in the action,

where σ is a scalar field. Then integrate out the ψ fields. Find the saddle

point equation for σ; argue that the saddle point dominates the integral for

large N . Find a translation invariant saddle point. Plug the saddle point

configuration of σ back into the action for ψ and describe the resulting

dynamics.

6. Diagrammatic understanding of BCS instability of Fermi liquid theory.

[optional]

(a) Recall that only the four-fermion interactions with special kinematics are

marginal. Keeping only these interactions, show that cactus diagrams (like

this: ) dominate.

(b) To sum the cacti, we can make bubbles with a corrected propagator. Argue

that this correction to the propagator is innocuous and can be ignored.

(c) Armed with these results, compute diagrammatically the Cooper-channel

susceptibility (two-particle Green’s function),

χ(ω0) ≡
〈
T ψ†~k,ω3,↓

ψ†
−~k,ω4,↑

ψ~p,ω1,↓ψ−~p,ω2,↑

〉
as a function of ω0 ≡ ω1 + ω2, the frequencies of the incoming particles.

Think of χ as a two point function of the Cooper pair field Φ = εαβψ
†
αψα at

zero momentum.

Sum the geometric series in terms of a (one-loop) integral kernel.

(d) Do the integrals. In the loops, restrict the range of energies to |ω| < ED
(or |ε(k)| < ED), the Debye energy, since it is electrons with these energies

which experience attractive interactions.

Consider for simplicity a round Fermi surface. For doing integrals of func-

tions singular near a round Fermi surface, make the approximation ε(k) '
vF (|k| − kF ), so that ddk ' kd−1

F
dξ
vF
dΩd−1.
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(e) Show that when V < 0 is attractive, χ(ω0) has a pole. Does it represent

a bound-state? Interpret this pole in the two-particle Green’s function as

indicating an instability of the Fermi liquid to superconductivity. Com-

pare the location of the pole to the energy EBCS where the Cooper-channel

interaction becomes strong.

(f) Cooper problem. [optional] We can compare this result to Cooper’s in-

fluential analysis of the problem of two electrons interacting with each other

in the presence of an inert Fermi sea. Consider a state with two electrons

with antipodal momenta and opposite spin

|ψ〉 =
∑
k

akψ
†
k,↑ψ

†
−k,↓ |F 〉

where |F 〉 =
∏

k<kF
ψ†k,↑ψ

†
k,↓ |0〉 is a filled Fermi sea. Consider the Hamilto-

nian

H =
∑
k

εkψ
†
k,σψk,σ +

∑
k,k′

Vk,k′ψ
†
k,σψk,σψ

†
k′,σ′ψk′,σ′ .

Write the Schrödinger equation as

(ω − 2εk)ak =
∑
k′

Vk,k′ak′ .

Now assume (following Cooper) that the potential has the following form:

Vk,k′ = V w?k′wk, wk =

{
1, 0 < εk < ED

0, else
.

Defining C ≡
∑

k ω
?
kak, show that the Schrödinger equation requires

1 = V
∑
k

|wk|2

ω − 2εk
. (2)

Assuming V is attractive, find a bound state. Compare (26) to the condition

for a pole found from the bubble chains above.

7. Abrikosov-Nielsen-Oleson vortex string. [optional]

Consider the Abelian Higgs model in D = 3 + 1:

Lh ≡ −
1

4
FµνF

µν +
1

2
|Dµφ|2 − V (|φ|)

where φ is a scalar field of charge e whose covariant derivative isDµφ = (∂µ − iqAµ)φ,

and let’s take

V (|φ|) =
κ

2
(|φ|2 − v2)2
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for some couplings κ, v. Here we are going to do some interesting classical field

theory, to show that magnetic flux lines in a superconductor collimate into a

string. Set q = 1 for a bit.

(a) Consider a configuration which is independent of x3, one of the spatial co-

ordinates, and static (independent of time). Show that its energy density

(energy per unit length in x3) is

U =

∫
d2x

(
1

2
F 2

12 +
1

2
|Diφ|2 + V (|φ|)

)
.

(b) Consider the special case where κ = 1. Assuming that the integrand falls

off sufficiently quickly at large x1,2, show that

Uκ=1 =

∫
d2x

(
1

2

(
F12 + |φ|2 − v2

)2
+

1

4
|Diφ+ iεijDjφ|2 + v2F12 −

1

2
iεk`∂k (φ?D`φ)

)
.

(c) The first two terms in the energy density of the previous part are squares and

hence manifestly positive, so setting to zero the things being squared will

minimize the energy density. Show that the resulting first-order equations

(they are called BPS equations after people with those initials, Bogolmonyi,

Prasad, Sommerfeld)

0 = (Di + iεijDj)φ, F12 = −|φ|2 + v2

are solved by (x1 + ix2 ≡ reiϕ)

φ = einϕf(r), A1 + iA2 = −ieiϕ
a(r)− n

r

if

f ′ =
a

r
f, a′ = r(f 2 − v2)

with boundary conditions

a→ 0, f → v +O
(
e−mr

)
, at r →∞ (3)

a→ n+O(r2), f → rn(1 +O(r2)), at r → 0.

(For other values of κ, the story is not as simple, but there is a solution

with the same qualitative properties. See for example §3.3 of E. Weinberg,

Classical solutions in Quantum Field Theory.)

(d) The second BPS equation and (27) imply that the region where field config-

uration differs from its vacuum behavior (in particular F12) is localized near

r = 0. Evaluate the magnetic flux through the x1 − x2 plane, Φ ≡
∫
B · da

in the vortex configuration labelled by n. Show that the energy density is

U = v2

2
· Φ.
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(e) Show that the previous result for the flux follows from demanding that the

two terms in Diφ cancel at large r so that

Diφ
r→∞→ 0 (4)

faster than 1/r. Solve (30) for Ai in terms of φ and integrate
∫
d2xF12.

(f) Argue that a single vortex (string) in the ungauged theory (with global U(1)

symmetry)

L = |∂φ|2 + V (|φ|)

does not have finite energy per unit length. By a vortex, I mean a configu-

ration where φ
r→∞→ veiϕ, where x1 + ix2 = reiϕ.

(g) Consider now the case where the scalar field has charge q. (Recall that in a

superconductor made by BCS pairing of electrons, the charged field which

condenses has electric charge two.) Show that the magnetic flux in the core

of the minimal (n = 1) vortex is now (restoring units) hc
qe

.

8. BPS conditions from supersymmetry. [bonus!] What’s special about κ = 1?

For one thing, it is the boundary between type I and type II superconductors

(which are distinguished by the size of the vortex core). More sharply, it means

the mass of the scalar equals the mass of the vector, at least classically. Moreover,

in the presence of some extra fermionic fields, the model with this coupling has an

additional symmetry mixing bosons and fermions, namely supersymmetry. This

symmetry underlies the special features we found above. Here is an outline (you

can do some parts without doing others) of how this works. The logic in part

(c) underlies a lot of the progress in string theory since the mid-1990s. Please do

not trust my numerical factors.

(a) Add to Lh a charged fermion Ψ (partner of φ) and a neutral Majorana

fermion λ (partner of Aµ):

Lf =
1

2
iΨ̄ /DΨ + iλ̄ /Dλ+ λ̄Ψφ+ h.c..

Consider the transformation rules

δεAµ = iε̄γµλ, δεΨ = Dµφγ
µε, δεφ = −iε̄Ψ, δελ = −1

2
iσµνFµνε+ i(|φ|2 − v)ε

where the transformation parameter ε is a Majorana spinor (and a grass-

mann variable). Show that (something like this) is a symmetry of L =

Lh + Lf . This is N = 1 supersymmetry in D = 4.
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(b) Show that the conserved charges associated with these transformations Qα

(they are grassmann objects and spinors, since they generate the transfor-

mations, via δεfields = [εαQα + h.c., fields]), satisfy the algebra

{Q, Q̄} = 2γµPµ + 2γµΣµ (5)

where Pµ is the usual generator of spacetime translations and Σµ is the vortex

string charge, which is nonzero in a state with a vortex string stretching in

the µ direction. Q̄ ≡ Q†γ0 as usual.

(c) If we multiply (31) on the right by γ0, we get the positive operator {Qα, Q
†
β}.

This operator annihilates states which satisfy Q |BPS〉 = 0 for some com-

ponents of Q. Such a state is therefore invariant under some subgroup of the

superymmetry, and is called a BPS state. Now look at the right hand side

of (31)×γ0 in a configuration where Σ3 = πnv2 and show that its energy

density is E ≥ π|n|v2, with the inequality saturated only for BPS states.

(d) To find BPS configurations, we can simply set to zero the relevant supersym-

metry variations of the fields. Since we are going to get rid of the fermion

fields anyway, we can set them to zero and consider just the (bosonic) vari-

ations of the fermionic fields. Show that this reproduces the BPS equations.
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