University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021
 Assignment 1 - Solutions

Due 12:30pm Monday, January 11, 2020

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me. I am happy to give TeX advice.
- To hand in your homework, please submit a pdf file through the course's Canvas website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me by email if you have any trouble.

1. Groundstate degeneracy and 1-form symmetry algebra.

(a) Suppose we have a system with Hamiltonian H with string operators W_{C} and $V_{\check{C}}$ supported on closed curves, and commuting with H, and satisfying $W^{N}=V^{N}=1$. Suppose $\left[W_{C}, W_{C^{\prime}}\right]=0,\left[V_{\check{C}}, \check{C}^{\prime}\right]$ for all curves but

$$
W_{C} V_{\check{C}}=\omega^{\#(C \cap \check{C})} V_{\check{C}} W_{C}
$$

where $\omega \equiv e^{\frac{2 \pi \mathrm{i}}{N}}$ and $\#(C \cap \check{C})$ is the number of intersection points of the curves. How many groundstates does such a system have on the two-torus (that is, with periodic boundary conditions on both spatial directions)?
This is what happens in the \mathbb{Z}_{N} toric code.
For each non-contractible cycle $C_{x, y}$ of the torus, we get a pair of string operators $W_{C}, V_{\check{C}}$, with

$$
W_{C_{x}} V_{\check{C}_{y}}=\omega V_{\check{C}_{y}} W_{C_{x}}, \quad W_{C_{y}} V_{\check{C}_{x}}=\omega^{-1} V_{\check{C}_{x}} W_{C_{y}}
$$

- note that the orientation of the intersection matters now. Let's diagonalize $W_{C_{x}}$ and $W_{C_{y}}$. Their eigenvalues are roots of unity. Starting from a state $|(1,1)\rangle$ with eigenvalues $(1,1)$, the action of $V_{C_{y}}^{n} V_{C_{x}}^{m}$ generates

$$
|(n,-m)\rangle=V_{C_{y}}^{n} V_{C_{x}}^{m}|(1,1)\rangle
$$

with the eigenvalues ω^{n} and ω^{-m} under $W_{C_{x}}$ and $W_{C_{y}}$. Since they have different eigenvalues they are linearly independent. This gives N^{2} groundstates as the minimal representation of this algebra. On a genus g Riemann surface, with g conjugate pairs of cycles, we would find $N^{2 g}$ groundstates.
(b) Now suppose in a different system we have just one set of string operators W_{C} satisfying

$$
W_{C} W_{C^{\prime}}=\omega^{\#\left(C \cap C^{\prime}\right)} W_{C^{\prime}} W_{C}
$$

with the same definitions as above. How many groundstates does this system have on the two-torus?
This is what happens in the Laughlin fractional quantum Hall state with filling fraction $\frac{1}{N}$.
Now we get just one conjugate pair of operators on the torus:

$$
W_{C_{x}} W_{C_{y}}=\omega W_{C_{y}} W_{C_{x}} .
$$

Acting on an eigenstate $|1\rangle$ of $W_{C_{x}}$ with eigenvalue $1, W_{C_{y}}^{n}$ generates

$$
|n\rangle=W_{C_{y}}^{n}|1\rangle
$$

with $W_{C_{x}}$-eigenvalue ω^{n}. Therefore the minimal representation has N states. On a genus- g Riemann surface, there would be N^{g} states.
(c) [Bonus problem] Redo the previous problems for a genus g Riemann surface, i.e. the surface of a donut with g handles.

In all parts of this problem you should make the assumption that the string operators are deformable: W_{C} acts in the same way as $W_{C+\partial p}$ on groundstates.

2. Anyons in the toric code.

(a) Show that when acting on a toric code groundstate the operator

$$
W_{C}=\prod_{\ell \in C} X_{\ell}
$$

creates a state which violates only the star operators at the sites in the boundary of $C, \partial C$, a pair of e-particles.
Clearly W_{C} commutes with B_{p} since they are both made of just X s. If a site j touches C in the middle somewhere, A_{j} shares two edges with W_{C} and therefore $\left[A_{j}, W_{C}\right]=0$. At the end of the curve is a site which shares only one edge with A_{j} and therefore they anticommute. Therefore acting with W_{C} changes the A_{j}-eigenvalue of the state from 1 to -1 .
(b) Show that when acting on a toric code groundstate the operator

$$
V_{\check{C}}=\prod_{\ell \perp \check{C}} Z_{\ell}
$$

creates a state which violates only the plaquette operators in the boundary of $\check{C}, \partial \check{C}$.
This question is related to the previous by the duality map which takes the lattice to the dual lattice and interchanges $X \leftrightarrow Z$.
(c) Show that a boundstate of an e particle and an m particle in the 2 d toric code must be a fermion.
Recall that a particle is a fermion if after rotating it by 2π its state picks up a minus sign:

$$
|\longrightarrow\rangle \gg
$$

The operator which creates the epsilon particle looks like this, call it \mathcal{O}_{1} :

The operator which creates an epsilon particle and rotates it by 2π looks like this, call it \mathcal{O}_{2} :

The product of the two is this:

except I need to tell you the order in which the X and Z act on the indicated link. Therefore

$$
\langle\longrightarrow \mid \longrightarrow\rangle=\langle\operatorname{gs}| \mathcal{O}_{2} \mathcal{O}_{1}|\mathrm{gs}\rangle .
$$

If we can separate the two loops of $X \mathrm{~s}$ and $Z \mathrm{~s}$ in (1) they will give $W_{C} V_{\check{C}}$ for contractible curves, which gives 1 when acting on the groundstate. But: the X and Z on the indicated link need to be moved past each other first. This costs a minus sign and therefore

$$
\langle\longrightarrow \mid \longrightarrow\rangle=\langle\mathrm{gs}| \mathcal{O}_{2} \mathcal{O}_{1}|\mathrm{gs}\rangle=-1 .
$$

Alternatively, we can think about exchange. Exchanging two particles can be accomplished by first rotating one around the other by a π rotation, and then translating both of them by their separation. As you can see in this figure:

the first step requires the string creating the e particle to cross that creating the m particle on an odd number of links. (The second step is innocuous.)

