University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021 Assignment 1

Due 12:30pm Monday, January 11, 2020

- Homework will be handed in electronically. Please do not hand in photographs of hand-written work. The preferred option is to typeset your homework. It is easy to do and you need to do it anyway as a practicing scientist. A LaTeX template file with some relevant examples is provided here. If you need help getting set up or have any other questions please email me. I am happy to give TeX advice.
- To hand in your homework, please submit a pdf file through the course's Canvas website, under the assignment labelled hw01.

Thanks in advance for following these guidelines. Please ask me by email if you have any trouble.

1. Groundstate degeneracy and 1-form symmetry algebra.

(a) Suppose we have a system with Hamiltonian H with string operators W_{C} and $V_{\check{C}}$ supported on closed curves, and commuting with H, and satisfying $W^{N}=V^{N}=1$. Suppose $\left[W_{C}, W_{C^{\prime}}\right]=0,\left[V_{\check{C}}, \check{C}^{\prime}\right]$ for all curves but

$$
W_{C} V_{\check{C}}=\omega^{\#(C \cap \check{C})} V_{\check{C}} W_{C}
$$

where $\omega \equiv e^{\frac{2 \pi i}{N}}$ and $\#(C \cap \check{C})$ is the number of intersection points of the curves. How many groundstates does such a system have on the two-torus (that is, with periodic boundary conditions on both spatial directions)? This is what happens in the \mathbb{Z}_{N} toric code.
(b) Now suppose in a different system we have just one set of string operators W_{C} satisfying

$$
W_{C} W_{C^{\prime}}=\omega^{\#\left(C \cap C^{\prime}\right)} W_{C^{\prime}} W_{C}
$$

with the same definitions as above. How many groundstates does this system have on the two-torus?

This is what happens in the Laughlin fractional quantum Hall state with filling fraction $\frac{1}{N}$.
(c) [Bonus problem] Redo the previous problems for a genus g Riemann surface, i.e. the surface of a donut with g handles.

In all parts of this problem you should make the assumption that the string operators are deformable: W_{C} acts in the same way as $W_{C+\partial p}$ on groundstates.

2. Anyons in the toric code.

(a) Show that when acting on a toric code groundstate the operator

$$
W_{C}=\prod_{\ell \in C} X_{\ell}
$$

creates a state which violates only the star operators at the sites in the boundary of $C, \partial C$, a pair of e-particles.
(b) Show that when acting on a toric code groundstate the operator

$$
V_{\check{C}}=\prod_{\ell \perp \check{C}} Z_{\ell}
$$

creates a state which violates only the plaquette operators in the boundary of $\check{C}, \partial \check{C}$.
(c) Show that a boundstate of an e particle and an m particle in the 2 d toric code must be a fermion.

