University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021
 Assignment 2 - Solutions

Due 12:30pm Monday, January 18, 2020
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Toric code as \mathbb{Z}_{2} gauge theory with matter. Consider a model with qubits on the links of a lattice (with Pauli operators $X_{\ell}, Z_{\ell}, X_{\ell} Z_{\ell}=-Z_{\ell} X_{\ell}$) and qubits on the sites of the lattice (with Pauli operators $\sigma_{j}^{x}, \sigma_{j}^{z}, \sigma_{j}^{x} \sigma_{j}^{z}=-\sigma_{j}^{z} \sigma_{j}^{x}$).
(a) Show that the operator

$$
G_{j} \equiv A_{j} \sigma_{j}^{z}
$$

(where A_{j} is the star operator) generates the gauge transformation

$$
\begin{equation*}
\sigma_{j}^{x} \rightarrow(-1)^{s_{j}} \sigma_{j}^{x}, \quad X_{i j} \rightarrow(-1)^{s_{i}} X_{i j}(-1)^{s_{j}}, \quad \sigma_{j}^{z} \rightarrow \sigma_{j}^{z}, \quad Z_{i j} \rightarrow Z_{i j} \tag{1}
\end{equation*}
$$

(where i, j are the sites at the ends of the link labelled $i j$). By generates here I mean that an operator \mathcal{O} transforms as

$$
\mathcal{O} \rightarrow \mathcal{G}_{s}^{\dagger} \mathcal{O} \mathcal{G}_{s}, \quad \mathcal{G}_{s} \equiv \prod_{j} G_{j}^{s_{j}}
$$

with $s_{j}=0,1$.
The relations involving Z and σ^{z} follow because they commute with G_{j}. X_{ℓ} transforms under G_{j} if the site $j \in \partial \ell$.
(b) Show that the Hamiltonian

$$
\mathbf{H}=-\sum_{j} G_{j}-\sum_{p} B_{p}-h \sum_{i j} \sigma_{i}^{x} X_{i j} \sigma_{j}^{x}-g \sum_{\langle i j\rangle} Z_{i j}
$$

is gauge invariant.
G_{j} commutes with $G_{j^{\prime}} . B_{p}$ commutes since it is a closed loop of $X \mathrm{~s}$. The third term is a kinetic term for the e particles, which is invariant because the transformation of the σ^{x} s cancels that of the X. The last term is invariant because it is made of $Z \mathrm{~s}$.

Here we can identify σ_{j}^{x} as the operator which creates an e particle at site j. And we can identify $\sigma_{j}^{z}=(-1)^{n_{j}}$ as the parity of the number operator.
(c) Show that if we set $\sigma_{j}^{x}=1$ and $\sigma_{j}^{z}=1$ for all j we get back the (perturbed) toric code.

Bonus problem: interpret this operation as a choice of gauge in the model where $G_{j}=1$ is imposed as a constraint on physical states.
Clearly if we just erase all the $\sigma_{j}^{x} \mathrm{~s}$ and $\sigma_{j}^{z} \mathrm{~s}$ we get back the toric code Hamiltonian.
And clearly we can choose the gauge parameter s_{j} in (1) to set $\sigma^{x}=1$. The tricky part of this is that we can also erase all the appearances of σ^{z}. This wouldn't make sense on the full Hilbert space $\otimes \mathcal{H}_{2}$, since σ^{z} and σ^{x} do not commute. The claim is that on the space of physical states of the gauge theory, which satisfy $G_{j}|\mathrm{phys}\rangle=|\mathrm{phys}\rangle$ for all j, we can do this. It's because on such states, the action of σ_{j}^{z} can be replaced by A_{j}. If everything is gauge-invariant, any appearance of G_{j} can be moved onto the states, and replaced with 1.
2. 3-ball. Find two cellulations of the 3 -dimensional ball (e.g. the region $x^{2}+y^{2}+$ $z^{2} \leq 1$ in \mathbb{R}^{3}) and compute the resulting homology groups.

One cellulation is one 3 -cell and then the cellulation of the boundary 2 -sphere by a single 2 -cell and a single 0 -cell. The boundary maps are $\partial \sigma_{3}=\sigma_{2}, \partial \sigma_{2}=0$ and we find $H_{i}\left(B_{3}, \mathbb{Z}\right)=\delta_{i, 0} \mathbb{Z}$.

Alternatively, we could take a different cellulation of the boundary 2-sphere, say the iterative scheme described in the lecture notes. The cell complex is then

$$
0 \rightarrow A \xrightarrow{(1,-1)} A^{2} \xrightarrow{\left(\begin{array}{cc}
1 & 1 \\
-1 & -1
\end{array}\right)} A^{2} \xrightarrow{\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)} A^{2} \rightarrow 0
$$

Compared to the cell complex for S^{2}, the extra step kills the 2d homology, and we again find $H_{i}\left(B_{3}, \mathbb{Z}\right)=\delta_{i, 0} \mathbb{Z}$.

3. Who am I?

(a) Compute the homology of the following cell complex: take a 2 -simplex [v_{0}, v_{1}, v_{2}] (recall that the simplex $\left[v_{0}, \cdots, v_{n}\right]$ is the set of all convex combinations of the points $\left.v_{i}:\left[v_{0}, \cdots, v_{n}\right] \equiv\left\{\lambda_{i} v_{i}, \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}\right)$ and identify the edges $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$ (with the orientation preserving the order of the vertices). Also identify the 0 -cells in their boundaries.
In order to identify the edges $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$, we have to identify all the vertices. The edge $\left[v_{2}, v_{0}\right]$ is still distinct, so there are two 2 -cells, y_{1}, y_{2}.

Here is a picture of the resulting cell complex:

The cell complex is

$$
0 \rightarrow A \xrightarrow{(2,1)} A^{2}=\left\langle y_{1}=\left[v_{0}, v_{1}\right]=\left[v_{1}, v_{2}\right],\left[v_{2}, v_{0}\right]\right\rangle \xrightarrow{\binom{0}{0}} A \rightarrow 0 .
$$

For $A=\mathbb{Z}$, this gives $H_{2}=0, H_{1}=\mathbb{Z} \oplus \mathbb{Z}_{2}, H_{0}=\mathbb{Z}$.
(b) Compute the homology of the following cell complex: take a square. Identify one pair of opposite edges with a twist:

The other pair of sides remains distinct. Is this the same space from the previous part? What space is it?
Both of these spaces describe a Mobius strip, an unoriented 2d manifold with a single boundary. This cell complex is

$$
0 \rightarrow \mathbb{Z} \xrightarrow{(2,1,1)} \mathbb{Z}^{3} \xrightarrow{\left(\begin{array}{cc}
-1 & 1 \\
-1 & 1 \\
1 & -1
\end{array}\right)} \mathbb{Z}^{2} \rightarrow 0
$$

whose homology is

$$
H_{2}=0, H_{1}=\left\langle y_{1}, y_{2}+y_{3} \mid 2 y_{1}=0\right\rangle=\mathbb{Z}_{2} \oplus \mathbb{Z}, H_{2}=\mathbb{Z}=\left\langle p_{1}=p_{2}\right\rangle
$$

4. Consider a sphere with an extra 1-cell attaching the north pole to the south pole. Compute the homology of this space.

Let's decompose the sphere as a single 2-cell w whose boundary is a single line of longitude, e_{1}, traversed twice: $\partial w=e_{1}-e_{1}=0$. Then the extra 1-cell is e_{2} with $\partial e_{1}=N-S=\partial e_{2}$. The complex is

$$
0 \rightarrow A \xrightarrow{0} A^{2} \xrightarrow{\binom{1-1}{1-1}} A^{2} \rightarrow 0
$$

∂_{2} clearly has rank 1 , so we find

$$
H_{2}=A, H_{1}=A=\left\langle e_{1}-e_{2}\right\rangle, H_{0}=A=\langle N=S\rangle
$$

Later we'll see that homology is invariant under homotopy. We can find a homotopy that moves the north pole end of the extra 1-cell down to the south pole. So this space has the same homology as a sphere with a loop attached to it.

