University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021

 Assignment 2Due 12:30pm Monday, January 18, 2020
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Toric code as \mathbb{Z}_{2} gauge theory with matter. Consider a model with qubits on the links of a lattice (with Pauli operators $X_{\ell}, Z_{\ell}, X_{\ell} Z_{\ell}=-Z_{\ell} X_{\ell}$) and qubits on the sites of the lattice (with Pauli operators $\sigma_{j}^{x}, \sigma_{j}^{z}, \sigma_{j}^{x} \sigma_{j}^{z}=-\sigma_{j}^{z} \sigma_{j}^{x}$).
(a) Show that the operator

$$
G_{j} \equiv A_{j} \sigma_{j}^{z}
$$

generates the gauge transformation

$$
\begin{equation*}
\sigma_{j}^{x} \rightarrow(-1)^{s_{j}} \sigma_{j}^{x}, \quad X_{i j} \rightarrow(-1)^{s_{i}} X_{i j}(-1)^{s_{j}}, \quad \sigma_{j}^{z} \rightarrow \sigma_{j}^{z}, \quad Z_{i j} \rightarrow Z_{i j} \tag{1}
\end{equation*}
$$

(where i, j are the sites at the ends of the link labelled $i j$). By generates here I mean that an operator \mathcal{O} transforms as

$$
\mathcal{O} \rightarrow \mathcal{G}_{s}^{\dagger} \mathcal{O} \mathcal{G}_{s}, \quad \mathcal{G}_{s} \equiv \prod_{j} G_{j}^{s_{j}}
$$

with $s_{j}=0,1$.
(b) Show that the Hamiltonian

$$
\mathbf{H}=-\sum_{j} G_{j}-\sum_{p} B_{p}-h \sum_{i j} \sigma_{i}^{x} X_{i j} \sigma_{j}^{x}-g \sum_{\langle i j\rangle} Z_{i j}
$$

is gauge invariant.
Here we can identify σ_{j}^{x} as the operator which creates an e particle at site j. And we can identify $\sigma_{j}^{z}=(-1)^{n_{j}}$ as the parity of the number operator.
(c) Show that if we set $\sigma_{j}^{x}=1$ and $\sigma_{j}^{z}=1$ for all j we get back the (perturbed) toric code.
Bonus problem: interpret this operation as a choice of gauge.
2. 3-ball. Find two cellulations of the 3-dimensional ball (e.g. the region $x^{2}+y^{2}+$ $z^{2} \leq 1$ in \mathbb{R}^{3}) and compute the resulting homology groups.

3. Who am I?

(a) Compute the homology of the following cell complex: take a 2 -simplex [$\left.v_{0}, v_{1}, v_{2}\right]$ (recall that the simplex $\left[v_{0}, \cdots, v_{n}\right]$ is the set of all convex combinations of the points $\left.v_{i}:\left[v_{0}, \cdots, v_{n}\right] \equiv\left\{\lambda_{i} v_{i}, \sum_{i} \lambda_{i}=1, \lambda_{i} \geq 0\right\}\right)$ and identify the edges $\left[v_{0}, v_{1}\right]$ and $\left[v_{1}, v_{2}\right]$ (with the orientation preserving the order of the vertices). Also identify the 0 -cells in their boundaries.
(b) Compute the homology of the following cell complex: take a square. Identify one pair of opposite edges with a twist:

The other pair of sides remains distinct. Is this the same space from the previous part? What space is it?
4. Consider a sphere with an extra 1-cell attaching the north pole to the south pole. Compute the homology of this space.

