University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 239 Topology from Physics Winter 2021 Assignment 4

Due 12:30pm Wednesday February 3, 2021
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Subdivision invariance. Subdivide a complex C made of a single 3 -simplex (and its sub-simplices) into a complex \hat{C} with four 3 -simplices. Show that the complex \hat{C} / C has no homology.
2. Relative homology. Take a torus X (like the surface of a bagel) and take a bite Y out of it. Choose the bite so that both Y and $X \backslash Y$ are annuli.

Choose a cell decomposition of X so that Y is closed (meaning that the boundaries of all cells in Y are also in Y). (This means that $X \backslash Y$ has rough boundary conditions and Y has smooth boundary conditions.) Compute $H_{\bullet}(X, \mathbb{Z}), H_{\bullet}(Y, \mathbb{Z}), H_{\bullet}(X / Y, \mathbb{Z})$. Show that your answers are consistent with the long exact sequence.
[Note that a more common situation is where one uses the long exact sequence to learn $H_{\bullet}(X, \mathbb{Z})$ from $H_{\bullet}(Y, \mathbb{Z})$ and $H_{\bullet}(X / Y, \mathbb{Z})$.]

3. Subdivision invariance and entanglement renormalization.

(a) Verify that conjugation by the control- X gate

$$
\mathrm{CX} \equiv P_{C}(0) \otimes \mathbb{1}_{T}+P_{C}(1) \otimes X_{T}
$$

(with $P_{C}(0)=|0\rangle\left\langle\left. 0\right|_{C}=\frac{1}{2}\left(1+Z_{C}\right), P_{C}(1)=\mid 1\right\rangle\left\langle\left. 1\right|_{C}=\frac{1}{2}\left(1-Z_{C}\right)\right)$, accomplishes the operations ($\mathcal{O} \leftrightarrow \mathrm{CXOCX}$)

$$
\begin{aligned}
1_{C} Z_{T} & \leftrightarrow Z_{C} Z_{T} \\
1_{C} X_{T} & \leftrightarrow 1_{C} X_{T} \\
Z_{C} 1_{T} & \leftrightarrow Z_{C} 1_{T} \\
X_{C} 1_{T} & \leftrightarrow X_{C} X_{T}
\end{aligned}
$$

(b) Find the Hamiltonians resulting from the operations described in the lecture notes which add a new plaquette or add a new vertex to the cell complex. (Note that some arrows were reversed in the vertex-addition-circuit in a previous version of the lecture notes.) Show that each one has the same topological groundstate degeneracy as the toric code on the new cell complex.
4. A topological qubit. Consider the toric code on this cell complex:

\[

\]

Recall that rough boundary conditions means that plaquette terms get truncated, such as the term $-X_{1} X_{2} X_{3}$, while smooth boundary conditions mean that star terms get truncated, such as the term $-Z_{4} Z_{5} Z_{6}$.
Show that there is a two-dimensional space of groundstates. A good way to do this is using the algebra of string operators which terminate at the various components of the boundary without creating excitations.
5. Duality wall. [Bonus problem] Show that the following hamiltonian realizes a
duality wall in the toric code.

What this means is that when crossing the wall, an e particle turns into an m particle and vice versa. (More precisely, there is a string operator which transports an e particle to the wall, and can be completed by a string operator transporting an m particle away from the wall, without creating any excitations.)
To be more precise about the figure: the dotted line carries no degrees of freedom. The terms in the hamiltonian along the wall are of the form

$$
H=\ldots-X_{2} X_{5} X_{3} Z_{7}-Z_{3} X_{7} X_{8} X_{9}
$$

and there is a term at the end of the wall (the little blue circle) of the form $-Z_{6} Y_{17} X_{18} X_{19} X_{20}$. Show that these terms commute with each other and all the usual star and plaquette terms, such as $A=Z_{1} Z_{2} Z_{3} Z_{4}$ and $B=X_{8} X_{10} X_{11} X_{12}$. What can you say about the end of the duality wall (the little blue circle)?

