
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021
Assignment 5 – Solutions

Due 12:30pm Wednesday February 10, 2021

Thanks in advance for following the guidelines on hw01. Please ask me by email if

you have any trouble.

1. Hodge star and adjoint of d. Consider the inner product on (real) p-forms

on a manifold without boundary M

〈B,A〉 ≡
∫
M

(?B) ∧ A.

Show (using integration by parts and ?2 = (−1)k) that the adjoint of the exterior

derivative can be written as

d† = s ? d?

where s is a sign depending on p and dimM.

Bonus problem: Find s.

〈
B, d†A

〉
= 〈dB,A〉 (1)

=

∫
M

(?dB) ∧ A =

∫
M
dB ∧ ?A (2)

IBP
= −(−1)p

∫
M
B ∧ d ? A (3)

= −(−1)p(−1)k
∫
M
?B ∧ ?d ? A ?2 = (−1)k (4)

= (−1)1+p+k 〈B, ?d ? A〉 . (5)

Since this is true for all p-forms B,A and the inner product is linear in each

argument, this says

d† = (−1)1+p+k ? d ? .

Now what is k? To figure it out we have to be more careful about this signs. The

Liebniz rule for forms is

d (Bp ∧ A) = dBp ∧ A+ (−1)pBp ∧ dA
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which implies

(?B) ∧ dA = −(−1)n−pd(?B) ∧ A+ total derivative .

So we have

〈B, dA〉 =

∫
M
?B∧dA = −(−1)n−p

∫
M
d?B∧A = (−1)n−p+1+x

∫
?(?d?B)∧A =

〈
d†, A

〉
.

where ?2 = (−1)x when acting on a q-form. Here x = q(n − q) and d ? B is a

n− p+ 1 form if B is a p-form. Therefore

d† = (−1)p(n−p+1) ? d ? .

2. Supersymmetric harmonic oscillator. Consider the quantum mechanical

system with Hamiltonian

H =
p2

2
+

1

2
ω2x2 +

1

2
ω[ψ̄, ψ].

(a) Using your knowledge of the ordinary harmonic oscillator, construct the

spectrum. Consider both signs of ω.

The two parts of the system actually decouple, so the spectrum arises by

taking their tensor product. The bosonic SHO has levels ω 1
2
, ω(1

2
+1), ω(1

2
+

2) · · · . The fermionic oscilaltor has levels ±ω 1
2
. If ω > 0, the empty state

is the groundstate, while if ω < 0, the filled state is the groundstate. Let’s

call the empty state bosonic. For ω > 0 the spectrum is:

B : 0, ω, 2ω · · · , F : ω, 2ω, · · ·

For ω < 0 the spectrum is:

F : ω, 2ω · · · , F : 0, ω, 2ω, · · · .

Altogether, we can write this as

EN,k =
1

2
|ω|
(
2N + 1− sign(ω)(−1)k

)
, N = 0, 1, 2..., k = 0, 1.

(b) Compute the thermal partition function at temperature β, Z(β) = tre−βH ,

and the Witten index tr(−1)F = tr(−1)F e−βH .
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Summing over the spectra above, we find

Z(β) =
∑
N,k

e−
β
2 (2N+1−sign(ω)(−1)k) =

e−β|ω|/2

1− e−β|ω|
2 cosh β|ω|/2 = coth β|ω|/2

and

tr(−1)F =
∑
N,k

(−1)ke−
β
2 (2N+1−sign(ω)(−1)k) =

e−β|ω|/2

1− e−β|ω|
sign(ω)2 sinh β|ω|/2 = sign(ω) .

Note that the overall sign depends on our convention for whether the empty

state is bosonic or fermionic.

3. Supersymmetry in D = 0 and localization. I got this problem from §9.3 of

the Clay Mirror Symmetry book.

In this problem, we consider the ‘action’

S[x, ψ, ψ̄] =
1

2
(∂xh(x))2 + aψ̄ψ∂2h(x)

for a field theory in D = 0 dimensions and the associated ‘partition function’

Z[h] ≡ 1√
2π

∫ ∞
−∞

dxdψdψ̄e−S[x,ψ,ψ̄].

Here ψ, ψ̄ are independent grassmann variables, but otherwise this is just an

ordinary finite-dimensional integral.

(a) Show that the action S is supersymmetric (for some choice of constant a),

in the sense that it is invariant under the transformation

δεx = εψ − ε̄ψ̄, δεψ = ε̄∂h, δεψ̄ = ε∂h.

ε, ε̄ are independent grassmann variables.

The variation of the action is

h′h′′(εψ − ε̄ψ̄) + ah′′(−ε̄h′ψ̄ + ψεh′) = 0

if a = −1.

(b) Prove the supersymmetry Ward identity

0 =
〈
δεg(x, ψ, ψ̄)

〉
(6)

where

〈O〉 ≡ 1√
2π

∫
dxdψdψ̄e−S[x,ψ,ψ̄]O
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for any function O of the dynamical variables, and g is a function with good

enough behavior at |x| → ∞.

[Hint: there is no boundary of the integration region.]

[Second hint: Very generally, if the action and integration measure are in-

variant under some symmetry then

〈δg〉 ≡
∫
δge−S = 0

where δg is the variation of g under the symmetry (as long as g behaves well

at the boundaries of the integration region). This follows from changing

variables in the integral. Consider, for example, the case
∫
R2 dxdye

−S[x,y],

with S[x, y] = x2 + y2 and δx = y, δy = −x (rotations).]

In the case of an n-dimensional bosonic integral, we can make a change of

coordinates (polar coords in the example) to new coordinates r1 · · · rn−1, θ

so that δri = 0, δθ = ε is the action of the symmetry. In that case, δf = ∂θf ,

and the integral is∫
dnxδge−S =

∫
dnxδ

(
ge−S

)
=

∫
dn−1rf(r)dθ∂θ

(
ge−S

)
= 0.

Note that the fact that the transformation is a symmetry of the measure

means that the integrand has no dependence on θ. At the last step we used

Stokes’ theorem and the assumption that there are no boundaries of the

range of integration that matter.

Here is a better way to think about it in general: with the assumption that

the measure and the action are invariant,

〈δg〉 = δ

(∫
ge−S

)
is just the change in the expectation value under a change of integration

variables by the symmetry transformation, which is zero since the integral

is coordinate invariant.

The supersymmetry Ward identity is the same idea but with grassmann

variables.

As long as δεS = 0, we have

〈δg〉 ≡
∫
δge−S =

∫
δ
(
ge−S

)
.

Assuming the integration measure is invariant under the symmetry as well,

we can make a change of variables
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(c) By choosing g(x, ψ, ψ̄) = ∂ρ(x)ψ (for some function ρ(x)) in the Ward

identity (6), show that changing h(x)→ h(x) + ρ(x) in the action does not

change the partition function Z, i.e. Z[h+ ρ] = Z[h], for infinitesimal ρ.

With this choice of g, we have

δεg = −ε̄ρ′′ψ̄ψ + ε̄ρ′h′ = ε̄δρS

where δρS is the change of S under the replacement h→ h+ ρ for infinites-

imal ρ (i.e. to first order in ρ).

Now the hard part. In the next few parts, we wish to show that the integral Z[h]

is localized to loci where the supersymmetry variation of the fermions is zero.

This is called the supersymmetric localization principle. In this case this means

0 = δψ ∝ ∂xh(x) ≡ h′(x), critical points of h.

(d) Argue that if h′(x) = 0 has no real solutions, then Z[h] = 0. Hint: change

integration variables to x̃ = x− ψ̄ψ/h′(x).

Actually in the problem with just a single superfield integration variable,

we can just do the integral over ψ, ψ̄ to get

Z =
1√
2π

∫
dφe−|h

′(φ)|2/2h′′(φ) =
1√
2π

∫ h′(∞)

h′(−∞)

due−u
2/2 =

1√
2π

∫
d

(√
π

2
erf (h′(φ))

)
= 0

(where u ≡ h′(x)) since the error function has the same limits at ±∞ as

long as h′(φ) has no zeros.

But for purposes of generalizing to many variables, its best to use the

supersymmetry transformation. If h′ has no zeros, we can do the sug-

gested change of variables. Moreover, we can choose the parameter of

the supersymmetry transformation to set ψ̄ = 0. This requires ε = ε̄ =

−ψ̄/h′(φ). (Notice that this requires h′ 6= 0.) The action becomes 1
2
(h′)2.

The measure becomes (from the jacobian of the bosonic variable) dφdψdψ̄ →
dφdψdψ̄

(
1− ψ̄ψ h′′

(h′)2

)
. Only the second term contributes, and

∫
dx

h′′

(h′)2
e−

1
2

(h′)2 =

∫
d

(
−
√
πerf(h′(x))− e−(h′(x))2

h′(x)

)
= 0

since the antiderivative has the same limits at x → ∞ as long as h′(x) has

no zeros.

(e) Hence the integral gets contribution only from the neighborhood of critical

points of h. Taylor expand to second order in h near such a critical point

and evaluate its contribution.
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Near a critical point x0, the quadratic action is

S ' −1

2
(h′′)2|x0(x− x0)2 + h′′|x0ψ̄ψ.

So the quadratic fluctuations integrate to (setting x0 = 0 wlog)

1√
2π

∫ ∞
−∞

dx e−
1
2

(h′′)2|x0 (x−x0)2
∫
dψ̄dψe−h

′′|x0 ψ̄ψ =
h′′(x0)

|h′′(x0)|
= sign(h′′|x0).

(f) Add up the results and conclude that the partition function is an integer.

Z =
∑

xA|h′(xA)=0

h′′(xA)

|h′′(xA)|

is a sum of terms, each of which is ±1.

(g) Conclude using the result of part (3c) that Z[h] = 0 if h is polynomial of

odd degree, while Z[h] = ±1 if h is a polynomial of even degree.

We can deform the potential any way we want. If the superpotential h is

a polynomial of odd degree, its derivative h′ has even degree, and we can

deform it so that it never touches the real axis, just by adding/subtracting

a large constant if h′(x → ∞) → ±∞. In contrast, if h’ has odd degree, it

must cross the origin an odd number of times and at least once. This one

critical point contributes ±1.

(h) Argue that the Witten index for the supersymmetric SHO of problem 2

reduces to Z[h = ωx2] in the limit β → 0.

The path integral expression for the Witten index

tr(−1)F =

∫
PBC

DXDψ̄Dψe−S

with periodic boundary conditions for everyone around the thermal circle (of

radius β, which does not matter). But we can choose β → 0, so that only

constant-in-time configurations contribute to the integral. The resulting

integral is exactly Z[h = ωx2]. Note that the answer agrees, since there is a

single critical point.

(i) [More optional] Generalize the results of this problem this problem to n

variables xi, ψi, ψ̄i, and a superpotential h which depends on all of them.

The only new ingredient is that the variation of x in the fermion mass term

gives a term of the form

∂i∂j∂kh(εψi − ε̄ψi)ψjψ̄k

but symmetry of the mixed partials and antisymmetry {ψi, ψj} = 0 of the

grassmann variables means this is zero.
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