University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 239 Topology from Physics Winter 2021 Assignment 5

Due 12:30pm Wednesday February 10, 2021
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Hodge star and adjoint of d. Consider the inner product on (real) p-forms on a manifold without boundary \mathcal{M}

$$
\langle B, A\rangle \equiv \int_{\mathcal{M}}(\star B) \wedge A
$$

Show (using integration by parts and $\star^{2}=(-1)^{k}$) that the adjoint of the exterior derivative can be written as

$$
d^{\dagger}=s \star d \star
$$

where s is a sign depending on p and $\operatorname{dim} \mathcal{M}$.
Bonus problem: Find s.
2. Supersymmetric harmonic oscillator. Consider the quantum mechanical system with Hamiltonian

$$
H=\frac{p^{2}}{2}+\frac{1}{2} \omega^{2} x^{2}+\frac{1}{2} \omega[\bar{\psi}, \psi] .
$$

(a) Using your knowledge of the ordinary harmonic oscillator, construct the spectrum. Consider both signs of ω.
(b) Compute the thermal partition function at temperature $\beta, Z(\beta)=\operatorname{tr} e^{-\beta H}$, and the Witten index $\operatorname{tr}(-1)^{F}=\operatorname{tr}(-1)^{F} e^{-\beta H}$.
3. Supersymmetry in $D=0$ and localization.

In this problem, we consider the 'action'

$$
S[x, \psi, \bar{\psi}]=\frac{1}{2}\left(\partial_{x} h(x)\right)^{2}+a \bar{\psi} \psi \partial^{2} h(x)
$$

for a field theory in $D=0$ dimensions and the associated 'partition function'

$$
Z[h] \equiv \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} d x d \psi d \bar{\psi} e^{-S[x, \psi, \bar{\psi}]}
$$

Here $\psi, \bar{\psi}$ are independent grassmann variables, but otherwise this is just an ordinary finite-dimensional integral.
(a) Show that the action S is supersymmetric (for some choice of constant a), in the sense that it is invariant under the transformation

$$
\delta_{\epsilon} x=\epsilon \psi-\bar{\epsilon} \bar{\psi}, \quad \delta_{\epsilon} \psi=\bar{\epsilon} \partial h, \quad \delta_{\epsilon} \bar{\psi}=\epsilon \partial h
$$

$\epsilon, \bar{\epsilon}$ are independent grassmann variables.
(b) Prove the supersymmetry Ward identity

$$
\begin{equation*}
0=\left\langle\delta_{\epsilon} g(x, \psi, \bar{\psi})\right\rangle \tag{1}
\end{equation*}
$$

where

$$
\langle\mathcal{O}\rangle \equiv \frac{1}{\sqrt{2 \pi}} \int d x d \psi d \bar{\psi} e^{-S[x, \psi, \bar{\psi}]} \mathcal{O}
$$

for any function \mathcal{O} of the dynamical variables, and g is a function with good enough behavior at $|x| \rightarrow \infty$.
[Hint: there is no boundary of the integration region.]
[Second hint: Very generally, if the action and integration measure are invariant under some symmetry then

$$
\langle\delta g\rangle \equiv \int \delta g e^{-S}=0
$$

where δg is the variation of g under the symmetry (as long as g behaves well at the boundaries of the integration region). This follows from changing variables in the integral. Consider, for example, the case $\int_{\mathbb{R}^{2}} d x d y e^{-S[x, y]}$, with $S[x, y]=x^{2}+y^{2}$ and $\delta x=y, \delta y=-x$ (rotations).]
(c) By choosing $g(x, \psi, \bar{\psi})=\partial \rho(x) \psi$ (for some function $\rho(x)$) in the Ward identity (1), show that changing $h(x) \rightarrow h(x)+\rho(x)$ in the action does not change the partition function Z, i.e. $Z[h+\rho]=Z[h]$, for infinitesimal ρ.

Now the hard part. In the next few parts, we wish to show that the integral $Z[h]$ is localized to loci where the supersymmetry variation of the fermions is zero. This is called the supersymmetric localization principle. In this case this means $0=\delta \psi \propto \partial_{x} h(x) \equiv h^{\prime}(x)$, critical points of h.
(d) Argue that if $h^{\prime}(x)=0$ has no real solutions, then $Z[h]=0$. Hint: change integration variables to $\tilde{x}=x-\bar{\psi} \psi / h^{\prime}(x)$.
(e) Hence the integral gets contribution only from the neighborhood of critical points of h. Taylor expand to second order in h near such a critical point and evaluate its contribution.
(f) Add up the results and conclude that the partition function is an integer.
(g) Conclude using the result of part (3c) that $Z[h]=0$ if h is polynomial of odd degree, while $Z[h]= \pm 1$ if h is a polynomial of even degree.
(h) Argue that the Witten index for the supersymmetric SHO of problem 2 reduces to $Z\left[h=\omega x^{2}\right]$ in the limit $\beta \rightarrow 0$.
(i) [More optional] Generalize the results of this problem this problem to n variables $x_{i}, \psi_{i}, \bar{\psi}_{i}$, and a superpotential h which depends on all of them.

