University of California at San Diego - Department of Physics - Prof. John McGreevy Physics 239 Topology from Physics Winter 2021 Assignment 7 - Solutions

Due 5pm Friday February 26, 2021
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Cohomology ring.

The wedge product $A \wedge B$ introduces a product structure on the cohomology of a manifold \mathcal{M}, i.e. $H_{\text {de Rham }}^{\bullet}(\mathcal{M})$ is actually a ring, not just an abelian group. Show that this product is well-defined in the sense that $[A] \wedge[B]=[A \wedge B]$.
We just need the Liebniz rule on forms:

$$
d(A \wedge B)=d A \wedge B+(-1)^{p} A \wedge d B
$$

if A is a p-form. Therefore, changing A and/or B by a coboundary changes $A \wedge B$ by a coboundary.
2. Pullback on forms. Check that the pullback operation on forms commutes with the exterior derivative, and so is a chain map on de Rham complexes.
Just use $f_{i} \equiv f^{\star}\left(y_{i}\right)=y_{i} \circ f$ as local coordinates on M. If they are not good coordinates, the form will vanish so it is OK. Given a p-form on $N g_{i_{1} \ldots i_{p}} d y^{i_{1}} \wedge$ $\cdots \wedge d y^{i_{p}}$, we want to show

$$
d\left(f^{\star}(g)\right)=f^{\star}(d g)
$$

The LHS is

$$
d\left(g_{i_{2} \cdots i_{p+1}}\left(f_{i}\right) d f_{i_{2}} \wedge \cdots d f_{i_{p+1}}\right)=\partial_{\left[i_{1}\right.} g_{\left.i_{2} \cdots i_{p+1}\right]}\left(f_{i}\right) d f_{i_{1}} \wedge d f_{i_{2}} \wedge \cdots d f_{i_{p+1}} .
$$

The RHS is the same expression, by definition of f^{\star}.

3. Kunneth formula.

Consider a manifold $\mathcal{M}=X \times Y$ defined as a Cartesian product of two others. That is, a point in \mathcal{M} can be labelled as (x, y), with $x \in X$ and $y \in Y$.
(a) Show that the de Rham complex on \mathcal{M} is

$$
\Omega^{p}(\mathcal{M})=\bigoplus_{k=0}^{n} \Omega^{k}(X) \otimes \Omega^{p-k}(Y)
$$

where $n=\operatorname{dim} \mathcal{M}=\operatorname{dim} X+\operatorname{dim} Y$, with the coboundary operator $d=$ $d_{X} \otimes \mathbb{1}_{Y} \pm \mathbb{1}_{X} \otimes d_{Y}$. Fix the sign. (Note that this operation defines the product of complexes $\Omega^{\bullet}(X \times Y)=\Omega^{\bullet}(X) \otimes \Omega^{\bullet}(Y)$.)
The idea is just that any form on $X \times Y$ is of the form

$$
\sum_{q=0}^{\operatorname{dim} X} \sum_{p=0}^{\operatorname{dim} Y} \omega_{i_{1} \cdots i_{q} j_{1} \cdots j_{p}}(x, y) d x^{i_{1}} \wedge \cdots \wedge d x^{i_{q}} \wedge d y^{j_{1}} \wedge \cdots \wedge d y^{j_{p}}
$$

The terms with fixed $p+q$ are the elements of $\Omega^{p+q}(\mathcal{M})$. We can choose a basis of such forms where $\omega_{i_{1} \cdots i_{q} j_{1} \cdots j_{p}}(x, y)=\omega_{i_{1} \cdots i_{q}}^{X}(x) \omega_{j_{1} \cdots j_{p}}^{Y}(y)$. On the basis elements,

$$
d\left(\omega_{q}^{X} \wedge \omega_{p}^{Y}\right)=d \omega_{q}^{X} \wedge \omega_{p}^{Y}+(-1)^{q} \omega_{q}^{X} \wedge d \omega_{p}^{Y} .
$$

(b) Relate the Betti numbers of \mathcal{M} to those of X and Y.

$$
b^{p}(X \times Y)=\sum_{k=0}^{n} b^{k}(X) b^{p-k}(Y)
$$

