University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021 Assignment 7

Due 5pm Friday February 26, 2021

Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Cohomology ring.

The wedge product $A \wedge B$ introduces a product structure on the cohomology of a manifold \mathcal{M} , *i.e.* $H^{\bullet}_{\text{de Rham}}(\mathcal{M})$ is actually a ring, not just an abelian group. Show that this product is well-defined in the sense that $[A] \wedge [B] = [A \wedge B]$.

2. **Pullback on forms.** Check that the pullback operation on forms commutes with the exterior derivative, and so is a chain map on de Rham complexes.

3. Kunneth formula.

Consider a manifold $\mathcal{M} = X \times Y$ defined as a Cartesian product of two others. That is, a point in \mathcal{M} can be labelled as (x, y), with $x \in X$ and $y \in Y$.

(a) Show that the de Rham complex on \mathcal{M} is

$$\Omega^{p}(\mathcal{M}) = \bigoplus_{k=0}^{n} \Omega^{k}(X) \otimes \Omega^{p-k}(Y)$$

where $n = \dim \mathcal{M} = \dim X + \dim Y$, with the coboundary operator $d = d_X \otimes 1_Y \pm 1_X \otimes d_Y$. Fix the sign. (Note that this operation defines the product of complexes $\Omega^{\bullet}(X \times Y) = \Omega^{\bullet}(X) \otimes \Omega^{\bullet}(Y)$.)

(b) Relate the Betti numbers of \mathcal{M} to those of X and Y.