University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021
 Assignment 9 - Solutions

Due 5pm Friday March 12, 2021
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Intersection pairing and cohomology. Because $2+2=4$, on a 4 -manifold M_{4}, we can define a pairing on the integral 2-cycles, $\left[S_{1}\right],\left[S_{2}\right] \in H_{2}\left(M_{4}, \mathbb{Z}\right)$, by $\left(S_{1}, S_{2}\right) \equiv$ the number of points in which S_{1} and S_{2} intersect, counted with orientation and multiplicity. The sign is plus if the volume form on S_{1} wedge the volume form on S_{2} agrees with the volume form on M_{4}.
(a) Now consider the Poincaré dual perspective. Each 2-cycle S has a Poincaré dual 2-form η_{S}. Show that

$$
\left(S_{1}, S_{2}\right)=\int_{M_{4}} \eta_{S_{1}} \wedge \eta_{S_{2}}
$$

Bonus: check the sign by considering representatives of $\left[\eta_{S_{1,2}}\right.$] supported in a small neighborhood of $S_{1,2}$, and looking at a coordinate system near an intersection point where S_{1} is $x=y=0$ and S_{2} is $z=w=0$.
Everything I am saying here is explained on the first few pages of the book by Donaldson and Kronheimer, Geometry of four-manifolds.
The definition of the Poincaré dual form η_{S} is $\int_{S} i_{\star}^{S}(\omega)=\int_{M_{4}} \eta_{S} \wedge \omega$ for all 2-forms ω, where i^{S} is the inclusion map $i: S \rightarrow M_{4}$. Since we can choose the Poincaré dual to have support in a small neighborhood about the cycle, we have

$$
\left(S_{1}, S_{2}\right)=\int_{S_{1}} i_{\star}^{S_{1}} \eta_{S_{2}}=\int_{M_{4}} \eta_{S_{1}} \wedge \eta_{S_{2}} .
$$

To verify the sign, choose coordinates near an intersection point and choose representatives where

$$
\eta_{1}=\rho(x, y) d x \wedge d y, \quad \eta_{2}(z, w) d z \wedge d w
$$

with $\rho(x, y)$ a function supported in a small neighborhood about the origin. In this case

$$
\int \eta_{1} \wedge \eta_{2}=\int_{M_{4}} \rho(x, y) \rho(z, w) d x \wedge d y \wedge d z \wedge d w= \pm
$$

gets contribution only from the neighborhood of the intersection and the sign is determined by comparing the orientations of S_{1} and S_{2} with that of M_{4}.
(b) Convince yourself of the following statement: There exists a basis of harmonic 2-forms $\alpha_{I}, I=1 . . b_{2}\left(M_{4}\right)$ satisfying

$$
\int_{M_{4}} \alpha_{I} \wedge \alpha_{J}=K_{I J}
$$

where $K_{I J}$ is the intersection matrix on some basis of the 2-cycles.
The intersection form is independent of cohomology representative. So we can appeal to the Hodge theorem to choose a harmonic representative of each class.
(c) Show that $K_{I J}$ is symmetric.

2-forms commute with each other.
(d) What is the intersection form on $S^{2} \times S^{2}$? On $\mathbb{C P}^{2}$? On S^{4} ?
$\sigma^{x}, 1$ and a 0 -dimensional matrix.
The example of $\mathbb{C P}^{2}$ illustrates the following lesson: The self-intersection of a given 2-cycle can be nonzero. In terms of forms, this is clear because 2 -forms are commuting objects. The definition is of the self-intersection is: take the two cycle S and deform it a little bit to another representative S ? of the same homology class. Generically S and S ? will intersect at a finite number of points, and this number counted with multiplicity depends only on the homology class.
In $\mathbb{C P}^{2}$ there is only one nontrivial generator of H_{2}. A representative is $S=\left\{\sum_{i=0}^{2} a_{i} z_{i}=0\right\}$? the zero locus of arbitrary linear function of the homogeneous coordinates. So one representative is $S_{2}=\left\{z_{2}=0\right\}$ and another is $S_{1}=\left\{z_{1}=0\right\} .[S]=\left[S_{1}\right]=\left[S_{2}\right]$. The intersection of the latter two sets is the point $\left\{\left(z_{0}, 0,0\right)\right\}$, so $K_{S S}=\#(S \cup S)=1$.
(e) Bonus: define the connected sum $X_{1} \# X_{2}$ of two n-manifolds $X_{1,2}$ to be the result of removing a small n-ball from each and gluing the resulting things together along the boundaries. What is the intersection form on $X_{1} \# X_{2}$ in terms of those of X_{1} and X_{2} ?
Direct sum.
(f) Bonus: By thinking about the spectrum of the Hodge \star operator on 2-forms, relate the signature of the matrix K (the number of positive eigenvalues minus the number of negative eigenvalues) to the Hirzebruch signature of M_{4}.

The key is that $\int \alpha \wedge \star \alpha \geq 0$ is a positive semi-definite norm on 2 -forms. So if we choose a basis of forms $\alpha_{ \pm}$which are eigenvectors of \star, we have

$$
0 \geq \int \alpha_{ \pm} \wedge \star \alpha_{ \pm}= \pm \int \alpha \wedge \alpha= \pm(\alpha, \alpha)
$$

(where I denote the dual 2-cycle also as α because why not). We conclude that if $K_{I I}<0(>0)$ then $\eta_{S_{I}}$ is in the anti-self-dual (self-dual) eigenspace of the Hodge \star. Therefore the number of negative (positive) diagonal entries of the intersection form is $b_{2}^{-}\left(b_{2}^{+}\right)$and the signature of the matrix K is equal to the Hirzebruch signature $b_{2}^{+}-b_{2}^{-}$.
(g) Bonus: argue that $K_{I J}$ is unimodular, that is, it satisfies det $K= \pm 1$. This follows from the fact that the pairing between $H_{2}\left(M_{4}, \mathbb{Z}\right)$ and $H^{2}\left(M_{4}, \mathbb{Z}\right)$ is an isomorphism.
2. Dimensional reduction exercise. Consider the following 3-form $\mathbf{U}(1)$ gauge theory in $6+1$ dimensions. The degree of freedom is a 3 -form potential C. Consider the action

$$
S[C]=\frac{1}{4 \pi} \int_{M_{7}} C \wedge d C
$$

where M_{7} is some smooth manifold. A field theory with this action is topological in the sense that no metric was required to write down the action.
(a) Show that S is gauge invariant if M_{7} is closed, $\partial M_{7}=0$. The infinitesimal gauge transformation acts as $C \rightarrow C+d \lambda$ for some 2-form λ.

$$
\delta S=\frac{1}{4 \pi} \int d \lambda \wedge d C \stackrel{\mathrm{IBP}}{=} 0
$$

(b) Consider the case where $M_{7}=M_{4} \times \mathbb{R}^{3}$, where M_{4} is some 4-manifold. Suppose that the intersection form on M_{4} is $K_{I J}, I=1 . . \operatorname{dim} H_{2}\left(M_{4}, \mathbb{Z}\right)$ Plug in $C=\sum_{I} \alpha^{I} \wedge A^{I}(x)$, where α^{I} are the basis of harmonic 2-forms on M_{4} from the previous part, and find the resulting 3d action for A^{I}.

$$
S[A]=\frac{K_{I J}}{4 \pi} \int_{\mathbb{R}^{3}} A^{I} \wedge d A^{J}
$$

3. Fundamental group of an acyclic space. In lecture we defined X by gluing two disks $B_{1,2}$ into a bouquet of two circles a and b by identifying their boundaries with the paths $a^{5} b^{-3}$ and $b^{3}(a b)^{-2}$. Use the van Kampen theorem twice to compute $\pi_{1}(X)$. That is, first use it compute $\pi_{1}\left(X \backslash B_{1}\right)$.

Decompose $Y \equiv X \backslash B_{1}$ into $U \cup V$ with $U=B_{2}$ and $V=Y \backslash$ a point in the middle of B_{2}. Then $\pi_{1}(U)=0, \pi_{1}(V)=\langle a, b\rangle=\mathbb{F}_{2}$, the free group on two elements, and $\pi_{1}(U \cap V)=\langle g\rangle$. Therefore

$$
\pi_{1}(Y)=\left\langle a, b \mid i_{\star}^{V}(g)=i_{\star}^{U}(g)\right\rangle=\left\langle a, b \mid b^{3}(a b)^{-2}=e\right\rangle .
$$

Now decompose X into $U^{\prime} \cup V^{\prime}$ with $U^{\prime}=B_{1}$ and $V^{\prime}=X \backslash$ a point in the middle of $B_{1} . \pi_{1}\left(U^{\prime}\right)=0, \pi_{1}\left(V^{\prime}\right)=\pi_{1}(Y)$ from the previous step and $\pi_{1}\left(U^{\prime} \cap V^{\prime}\right)=\langle h\rangle$ Therefore

$$
\pi_{1}(X)=\left\langle a, b \mid b^{3}(a b)^{-2}=e, i_{\star}^{V^{\prime}}(h)=i_{\star}^{U^{\prime}}(h)\right\rangle=\left\langle a, b \mid b^{3}(a b)^{-2}=e, a^{5} b^{-3}=e\right\rangle
$$

4. Induced map on homotopy groups. Like homology, π_{q} is a covariant functor from the category of topological spaces (and continuous maps) to the category of groups (and group homomorphisms). To see this, consider a map $\phi:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$. Given a representative of $\pi_{q}(X), \alpha:\left(I^{q}, \partial I^{q}\right) \rightarrow\left(X, x_{0}\right)$, we can use ϕ to make a representative of $\pi_{q}(Y)$, namely $\phi \circ f:\left(I^{q}, \partial I^{q}\right) \rightarrow\left(Y, y_{0}\right)$. So we can define an induced map on the homotopy groups

$$
\phi_{\star}[\alpha] \equiv[\phi \circ f] .
$$

Convince yourself that this is a group homomorphism in the sense that $\mathbb{1}_{\star}=\mathbb{1}$, $\phi \circ(\alpha \star \beta)=(\phi \circ \alpha) \star(\phi \circ \beta)$ and given also $\psi:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$, we have $\psi_{\star} \circ \phi_{\star}=(\psi \circ \phi)_{\star}$.
Conclude that if $X \simeq Y$ then $\pi_{1}(X) \cong \pi_{1}(Y)$.
If $f: X \rightarrow Y$ and $g: Y \rightarrow X$ are the relevant maps then the induced map $f_{\star}: \pi_{q}\left(X, x_{0}\right) \rightarrow \pi_{q}\left(X, f\left(x_{0}\right)\right)$ is an isomorphism with inverse g_{\star}.
5. $\mathbb{C P}^{2}$ is not anyone's boundary.

In this problem we will show that the boundary of any compact manifold has even Euler character. Since $\chi\left(\mathbb{C P}^{2}\right)$ is odd, it cannot arise as the boundary of any compact 5 -manifold.
(a) Here we will show that if $M=\partial V$ is a $2 n$-dimensional manifold and V is compact, then $\operatorname{dim}_{\mathbb{Z}_{2}} H^{n}\left(M, \mathbb{Z}_{2}\right)$ is even. (If we assume V is oriented, then we can replace \mathbb{Z}_{2} by any other field.)

Consider the following part of the long exact sequence for the homology of V relative to its boundary M :

All coefficients are \mathbb{Z}_{2}. The vertical maps f and g are isomorphisms because of Poincaré duality (the one that relates homology and cohomology).
Use the fact that $\operatorname{rank}\left(i_{\star}\right)=\operatorname{rank}\left(i^{\star}\right)$ and the diagram to conclude that $\operatorname{dim} H^{n}(M)=2 \operatorname{rank}\left(i^{\star}\right)$.
This comes from statements 10.4 and 10.5 of chapter VI of Bredon's book. The diagram implies that

$$
\begin{equation*}
\operatorname{dim} \operatorname{im}\left(i^{\star}\right)=\operatorname{dim} \operatorname{ker}\left(\delta^{\star}\right)=\operatorname{dim} \operatorname{ker}\left(i_{\star}\right) \tag{1}
\end{equation*}
$$

The first step is exactness of the sequence, and the second step is the fact that the vertical maps are isomorphisms. Then
$\operatorname{rank}\left(i^{\star}\right)=\operatorname{dimim}\left(i^{\star}\right) \stackrel{(1)}{=} \operatorname{dim} \operatorname{ker}\left(i_{\star}\right)=\operatorname{dim} H_{n}(M)-\operatorname{rank}\left(i_{\star}\right)=\operatorname{dim} H^{n}(M)-\operatorname{rank}\left(i^{\star}\right)$.
Therefore

$$
\operatorname{dim} H_{n}(M)=2 \operatorname{rank}\left(i^{\star}\right)
$$

Since the rank of a linear map is an integer, $\operatorname{dim} H_{n}(M)$ is even.
(b) Show that if $M=\partial V$, then $\chi(M)$ is even. Consider separately the cases where $\operatorname{dim} M$ is odd and even.
Hint: in the case where $\operatorname{dim} M=2 n$, relate $\chi(M)$ to $\operatorname{dim}_{\mathbb{Z}_{2}} H^{n}\left(M, \mathbb{Z}_{2}\right)$.
If $\operatorname{dim} M=2 n+1$ is odd, its euler character is $\chi=\left(b_{0}-b_{2 n+1}\right)+\left(b_{1}-b_{2 n}\right)+$ $\cdots+\left(b_{n}-b_{n+1}\right)=0$ by Poincaré duality. If $\operatorname{dim} M=2 n$ is even, its euler character is $\chi=\left(b_{0}-b_{2 n}\right)+\left(b_{1}-b_{2 n-1}\right)+\cdots+b_{n}=b_{n}$ (also by Poincaré duality). Therefore in the latter case

$$
\chi=b_{n}
$$

is even.
(c) What is $\chi\left(\mathbb{C P}^{2}\right)$? Conclude that $\mathbb{C P}^{2}$ represents a nontrivial cobordism class.

Since $\mathbb{C P}^{q}$ has a single generator in each even dimension, the euler character of $\mathbb{C P}^{2}$ is three. A good way to describe the cohomology of $\mathbb{C P}^{q}$ is as the polynomial ring

$$
H^{\bullet}\left(\mathbb{C P}^{q}\right)=\mathbb{R}[x] / x^{q+1}
$$

where x is the generator of $H^{2}\left(\mathbb{C P}^{2}\right)$.
(d) What about $\mathbb{R P}^{2}$? Can an unoriented closed compact Riemann surface be a boundary? (Use the same argument.)
χ is odd for any unoriented closed compact Riemann surface, so the same argument applies.
(e) What about $\mathbb{C P}^{n}$ for general n ?
$\mathbb{C P}^{1} \simeq S^{2}=\partial B^{3}$ is a boundary. More generally, since $\chi\left(\mathbb{C P}^{q}\right)=q+1$, we conclude that for q even $\mathbb{C P}^{q}$ is not a boundary. For general odd q we can't say based on the results of this problem.

