
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021
Assignment 9 – Solutions

Due 5pm Friday March 12, 2021

Thanks in advance for following the guidelines on hw01. Please ask me by email if

you have any trouble.

1. Intersection pairing and cohomology. Because 2 + 2 = 4, on a 4-manifold

M4, we can define a pairing on the integral 2-cycles, [S1], [S2] ∈ H2(M4,Z), by

(S1, S2) ≡ the number of points in which S1 and S2 intersect, counted with

orientation and multiplicity. The sign is plus if the volume form on S1 wedge the

volume form on S2 agrees with the volume form on M4.

(a) Now consider the Poincaré dual perspective. Each 2-cycle S has a Poincaré

dual 2-form ηS. Show that

(S1, S2) =

∫
M4

ηS1 ∧ ηS2 .

Bonus: check the sign by considering representatives of [ηS1,2 ] supported in

a small neighborhood of S1,2, and looking at a coordinate system near an

intersection point where S1 is x = y = 0 and S2 is z = w = 0.

Everything I am saying here is explained on the first few pages of the book

by Donaldson and Kronheimer, Geometry of four-manifolds.

The definition of the Poincaré dual form ηS is
∫
S
iS? (ω) =

∫
M4
ηS ∧ ω for all

2-forms ω, where iS is the inclusion map i : S → M4. Since we can choose

the Poincaré dual to have support in a small neighborhood about the cycle,

we have

(S1, S2) =

∫
S1

iS1
? ηS2 =

∫
M4

ηS1 ∧ ηS2 .

To verify the sign, choose coordinates near an intersection point and choose

representatives where

η1 = ρ(x, y)dx ∧ dy, η2(z, w)dz ∧ dw

with ρ(x, y) a function supported in a small neighborhood about the origin.

In this case∫
η1 ∧ η2 =

∫
M4

ρ(x, y)ρ(z, w)dx ∧ dy ∧ dz ∧ dw = ±
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gets contribution only from the neighborhood of the intersection and the

sign is determined by comparing the orientations of S1 and S2 with that of

M4.

(b) Convince yourself of the following statement: There exists a basis of har-

monic 2-forms αI , I = 1..b2(M4) satisfying∫
M4

αI ∧ αJ = KIJ

where KIJ is the intersection matrix on some basis of the 2-cycles.

The intersection form is independent of cohomology representative. So we

can appeal to the Hodge theorem to choose a harmonic representative of

each class.

(c) Show that KIJ is symmetric.

2-forms commute with each other.

(d) What is the intersection form on S2 × S2? On CP2? On S4?

σx, 1 and a 0-dimensional matrix.

The example of CP2 illustrates the following lesson: The self-intersection

of a given 2-cycle can be nonzero. In terms of forms, this is clear because

2-forms are commuting objects. The definition is of the self-intersection is:

take the two cycle S and deform it a little bit to another representative S?

of the same homology class. Generically S and S? will intersect at a finite

number of points, and this number counted with multiplicity depends only

on the homology class.

In CP2 there is only one nontrivial generator of H2. A representative is

S = {
∑2

i=0 aizi = 0} ? the zero locus of arbitrary linear function of the

homogeneous coordinates. So one representative is S2 = {z2 = 0} and

another is S1 = {z1 = 0}. [S] = [S1] = [S2]. The intersection of the latter

two sets is the point {(z0, 0, 0)}, so KSS = # (S ∪ S) = 1.

(e) Bonus: define the connected sum X1#X2 of two n-manifolds X1,2 to be the

result of removing a small n-ball from each and gluing the resulting things

together along the boundaries. What is the intersection form on X1#X2 in

terms of those of X1 and X2?

Direct sum.

(f) Bonus: By thinking about the spectrum of the Hodge ? operator on 2-forms,

relate the signature of the matrix K (the number of positive eigenvalues

minus the number of negative eigenvalues) to the Hirzebruch signature of

M4.

2



The key is that
∫
α∧ ?α ≥ 0 is a positive semi-definite norm on 2-forms. So

if we choose a basis of forms α± which are eigenvectors of ?, we have

0 ≥
∫
α± ∧ ?α± = ±

∫
α ∧ α = ±(α, α)

(where I denote the dual 2-cycle also as α because why not). We conclude

that if KII < 0(> 0) then ηSI
is in the anti-self-dual (self-dual) eigenspace of

the Hodge ?. Therefore the number of negative (positive) diagonal entries

of the intersection form is b−2 (b+2 ) and the signature of the matrix K is equal

to the Hirzebruch signature b+2 − b−2 .

(g) Bonus: argue that KIJ is unimodular, that is, it satisfies detK = ±1.

This follows from the fact that the pairing betweenH2(M4,Z) andH2(M4,Z)

is an isomorphism.

2. Dimensional reduction exercise. Consider the following 3-form U(1) gauge

theory in 6+1 dimensions. The degree of freedom is a 3-form potential C. Con-

sider the action

S[C] =
1

4π

∫
M7

C ∧ dC

where M7 is some smooth manifold. A field theory with this action is topological

in the sense that no metric was required to write down the action.

(a) Show that S is gauge invariant if M7 is closed, ∂M7 = 0. The infinitesimal

gauge transformation acts as C → C + dλ for some 2-form λ.

δS =
1

4π

∫
dλ ∧ dC IBP

= 0.

(b) Consider the case where M7 = M4 × R3, where M4 is some 4-manifold.

Suppose that the intersection form on M4 is KIJ , I = 1.. dimH2(M4,Z)

Plug in C =
∑

I α
I ∧AI(x), where αI are the basis of harmonic 2-forms on

M4 from the previous part, and find the resulting 3d action for AI .

S[A] =
KIJ

4π

∫
R3

AI ∧ dAJ .

3. Fundamental group of an acyclic space. In lecture we defined X by gluing

two disks B1,2 into a bouquet of two circles a and b by identifying their bound-

aries with the paths a5b−3 and b3(ab)−2. Use the van Kampen theorem twice to

compute π1(X). That is, first use it compute π1(X \B1).
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Decompose Y ≡ X\B1 into U∪V with U = B2 and V = Y \ a point in the middle

of B2. Then π1(U) = 0, π1(V ) = 〈a, b〉 = F2, the free group on two elements, and

π1(U ∩ V ) = 〈g〉. Therefore

π1(Y ) =
〈
a, b|iV? (g) = iU? (g)

〉
=
〈
a, b|b3(ab)−2 = e

〉
.

Now decompose X into U ′∪V ′ with U ′ = B1 and V ′ = X\ a point in the middle

of B1. π1(U
′) = 0, π1(V

′) = π1(Y ) from the previous step and π1(U
′ ∩ V ′) = 〈h〉

Therefore

π1(X) =
〈
a, b|b3(ab)−2 = e, iV

′

? (h) = iU
′

? (h)
〉

=
〈
a, b|b3(ab)−2 = e, a5b−3 = e

〉
.

4. Induced map on homotopy groups. Like homology, πq is a covariant functor

from the category of topological spaces (and continuous maps) to the category of

groups (and group homomorphisms). To see this, consider a map φ : (X, x0) →
(Y, y0). Given a representative of πq(X), α : (Iq, ∂Iq) → (X, x0), we can use φ

to make a representative of πq(Y ), namely φ ◦ f : (Iq, ∂Iq)→ (Y, y0). So we can

define an induced map on the homotopy groups

φ?[α] ≡ [φ ◦ f ].

Convince yourself that this is a group homomorphism in the sense that 1? = 1,

φ ◦ (α ? β) = (φ ◦ α) ? (φ ◦ β) and given also ψ : (Y, y0) → (Z, z0), we have

ψ? ◦ φ? = (ψ ◦ φ)?.

Conclude that if X ' Y then π1(X) ∼= π1(Y ).

If f : X → Y and g : Y → X are the relevant maps then the induced map

f? : πq(X, x0)→ πq(X, f(x0)) is an isomorphism with inverse g?.

5. CP2 is not anyone’s boundary.

In this problem we will show that the boundary of any compact manifold has

even Euler character. Since χ(CP2) is odd, it cannot arise as the boundary of

any compact 5-manifold.

(a) Here we will show that if M = ∂V is a 2n-dimensional manifold and V is

compact, then dimZ2 H
n(M,Z2) is even. (If we assume V is oriented, then

we can replace Z2 by any other field.)
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Consider the following part of the long exact sequence for the homology of

V relative to its boundary M :

Hn(V ) Hn(M) Hn+1(V,M)
i? δ?

Hn(M) Hn(V )

f g

i?

All coefficients are Z2. The vertical maps f and g are isomorphisms because

of Poincaré duality (the one that relates homology and cohomology).

Use the fact that rank(i?) = rank(i?) and the diagram to conclude that

dimHn(M) = 2rank(i?).

This comes from statements 10.4 and 10.5 of chapter VI of Bredon’s book.

The diagram implies that

dim im(i?) = dim ker(δ?) = dim ker(i?). (1)

The first step is exactness of the sequence, and the second step is the fact

that the vertical maps are isomorphisms. Then

rank(i?) = dim im(i?)
(1)
= dim ker(i?) = dimHn(M)−rank(i?) = dimHn(M)−rank(i?).

Therefore

dimHn(M) = 2rank(i?).

Since the rank of a linear map is an integer, dimHn(M) is even.

(b) Show that if M = ∂V , then χ(M) is even. Consider separately the cases

where dimM is odd and even.

Hint: in the case where dimM = 2n, relate χ(M) to dimZ2 H
n(M,Z2).

If dimM = 2n+1 is odd, its euler character is χ = (b0−b2n+1)+(b1−b2n)+

· · · + (bn − bn+1) = 0 by Poincaré duality. If dimM = 2n is even, its euler

character is χ = (b0 − b2n) + (b1 − b2n−1) + · · · + bn = bn (also by Poincaré

duality). Therefore in the latter case

χ = bn

is even.

(c) What is χ(CP2)? Conclude that CP2 represents a nontrivial cobordism class.
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Since CPq has a single generator in each even dimension, the euler character

of CP2 is three. A good way to describe the cohomology of CPq is as the

polynomial ring

H•(CPq) = R[x]/xq+1,

where x is the generator of H2(CP2).

(d) What about RP2? Can an unoriented closed compact Riemann surface be

a boundary? (Use the same argument.)

χ is odd for any unoriented closed compact Riemann surface, so the same

argument applies.

(e) What about CPn for general n?

CP1 ' S2 = ∂B3 is a boundary. More generally, since χ(CPq) = q + 1, we

conclude that for q even CPq is not a boundary. For general odd q we can’t

say based on the results of this problem.
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