University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 239 Topology from Physics Winter 2021 Assignment 9

Due 5pm Friday March 12, 2021

Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

- 1. Intersection pairing and cohomology. Because 2 + 2 = 4, on a 4-manifold M_4 , we can define a pairing on the integral 2-cycles, $[S_1], [S_2] \in H_2(M_4, \mathbb{Z})$, by $(S_1, S_2) \equiv$ the number of points in which S_1 and S_2 intersect, counted with orientation and multiplicity. The sign is plus if the volume form on S_1 wedge the volume form on S_2 agrees with the volume form on M_4 .
 - (a) Now consider the Poincaré dual perspective. Each 2-cycle S has a Poincaré dual 2-form η_S . Show that

$$(S_1, S_2) = \int_{M_4} \eta_{S_1} \wedge \eta_{S_2}.$$

Bonus: check the sign by considering representatives of $[\eta_{S_{1,2}}]$ supported in a small neighborhood of $S_{1,2}$, and looking at a coordinate system near an intersection point where S_1 is x = y = 0 and S_2 is z = w = 0.

(b) Convince yourself of the following statement: There exists a basis of harmonic 2-forms α_I , $I = 1..b_2(M_4)$ satisfying

$$\int_{M_4} \alpha_I \wedge \alpha_J = K_{IJ}$$

where K_{IJ} is the intersection matrix on some basis of the 2-cycles.

- (c) Show that K_{IJ} is symmetric.
- (d) What is the intersection form on $S^2 \times S^2$? On \mathbb{CP}^2 ? On S^4 ?
- (e) Bonus: define the connected sum $X_1 \# X_2$ of two *n*-manifolds $X_{1,2}$ to be the result of removing a small *n*-ball from each and gluing the resulting things together along the boundaries. What is the intersection form on $X_1 \# X_2$ in terms of those of X_1 and X_2 ?
- (f) Bonus: By thinking about the spectrum of the Hodge \star operator on 2-forms, relate the signature of the matrix K (the number of positive eigenvalues minus the number of negative eigenvalues) to the Hirzebruch signature of M_4 .

- (g) Bonus: argue that K_{IJ} is unimodular, that is, it satisfies det $K=\pm 1$.
- 2. **Dimensional reduction exercise.** Consider the following 3-form U(1) gauge theory in 6+1 dimensions. The degree of freedom is a 3-form potential C. Consider the action

$$S[C] = \frac{1}{4\pi} \int_{M_7} C \wedge dC$$

where M_7 is some smooth manifold. A field theory with this action is topological in the sense that no metric was required to write down the action.

- (a) Show that S is gauge invariant if M_7 is closed, $\partial M_7 = 0$. The infinitesimal gauge transformation acts as $C \to C + d\lambda$ for some 2-form λ .
- (b) Consider the case where $M_7 = M_4 \times \mathbb{R}^3$, where M_4 is some 4-manifold. Suppose that the intersection form on M_4 is K_{IJ} , I = 1.. dim $H_2(M_4, \mathbb{Z})$ Plug in $C = \sum_I \alpha^I \wedge A^I(x)$, where α^I are the basis of harmonic 2-forms on M_4 from the previous part, and find the resulting 3d action for A^I .
- 3. Fundamental group of an acyclic space. In lecture we defined X by gluing two disks $B_{1,2}$ into a bouquet of two circles a and b by identifying their boundaries with the paths a^5b^{-3} and $b^3(ab)^{-2}$. Use the van Kampen theorem twice to compute $\pi_1(X)$. That is, first use it compute $\pi_1(X \setminus B_1)$.
- 4. Induced map on homotopy groups. Like homology, π_q is a covariant functor from the category of topological spaces (and continuous maps) to the category of groups (and group homomorphisms). To see this, consider a map $\phi: (X, x_0) \to (Y, y_0)$. Given a representative of $\pi_q(X)$, $\alpha: (I^q, \partial I^q) \to (X, x_0)$, we can use ϕ to make a representative of $\pi_q(Y)$, namely $\phi \circ f: (I^q, \partial I^q) \to (Y, y_0)$. So we can define an induced map on the homotopy groups

$$\phi_{\star}[\alpha] \equiv [\phi \circ f].$$

Convince yourself that this is a group homomorphism in the sense that $\mathbb{1}_{\star} = \mathbb{1}$, $\phi \circ (\alpha \star \beta) = (\phi \circ \alpha) \star (\phi \circ \beta)$ and given also $\psi : (Y, y_0) \to (Z, z_0)$, we have $\psi_{\star} \circ \phi_{\star} = (\psi \circ \phi)_{\star}$.

Conclude that if $X \simeq Y$ then $\pi_1(X) \cong \pi_1(Y)$.

5. \mathbb{CP}^2 is not anyone's boundary.

In this problem we will show that the boundary of any compact manifold has even Euler character. Since $\chi(\mathbb{CP}^2)$ is odd, it cannot arise as the boundary of any compact 5-manifold.

2

(a) Here we will show that if $M = \partial V$ is a 2n-dimensional manifold and V is compact, then $\dim_{\mathbb{Z}_2} H^n(M, \mathbb{Z}_2)$ is even. (If we assume V is oriented, then we can replace \mathbb{Z}_2 by any other field.)

Consider the following part of the long exact sequence for the homology of V relative to its boundary M:

All coefficients are \mathbb{Z}_2 . The vertical maps f and g are isomorphisms because of Poincaré duality (the one that relates homology and cohomology).

Use the fact that $\operatorname{rank}(i_{\star}) = \operatorname{rank}(i_{\star})$ and the diagram to conclude that $\dim H^n(M) = 2\operatorname{rank}(i^{\star})$.

(b) Show that if $M = \partial V$, then $\chi(M)$ is even. Consider separately the cases where dim M is odd and even.

Hint: in the case where dim M = 2n, relate $\chi(M)$ to dim \mathbb{Z}_2 $H^n(M, \mathbb{Z}_2)$.

- (c) What is $\chi(\mathbb{CP}^2)$? Conclude that \mathbb{CP}^2 represents a nontrivial cobordism class.
- (d) What about \mathbb{RP}^2 ? Can an unoriented closed compact Riemann surface be a boundary? (Use the same argument.)
- (e) What about \mathbb{CP}^n for general n?