University of California at San Diego - Department of Physics - Prof. John McGreevy

## Physics 239 Topology from Physics Winter 2021 Assignment 9

Due 5pm Friday March 12, 2021
Thanks in advance for following the guidelines on hw01. Please ask me by email if you have any trouble.

1. Intersection pairing and cohomology. Because $2+2=4$, on a 4 -manifold $M_{4}$, we can define a pairing on the integral 2-cycles, $\left[S_{1}\right],\left[S_{2}\right] \in H_{2}\left(M_{4}, \mathbb{Z}\right)$, by $\left(S_{1}, S_{2}\right) \equiv$ the number of points in which $S_{1}$ and $S_{2}$ intersect, counted with orientation and multiplicity. The sign is plus if the volume form on $S_{1}$ wedge the volume form on $S_{2}$ agrees with the volume form on $M_{4}$.
(a) Now consider the Poincaré dual perspective. Each 2-cycle $S$ has a Poincaré dual 2-form $\eta_{S}$. Show that

$$
\left(S_{1}, S_{2}\right)=\int_{M_{4}} \eta_{S_{1}} \wedge \eta_{S_{2}}
$$

Bonus: check the sign by considering representatives of $\left[\eta_{S_{1,2}}\right.$ ] supported in a small neighborhood of $S_{1,2}$, and looking at a coordinate system near an intersection point where $S_{1}$ is $x=y=0$ and $S_{2}$ is $z=w=0$.
(b) Convince yourself of the following statement: There exists a basis of harmonic 2-forms $\alpha_{I}, I=1$.. $b_{2}\left(M_{4}\right)$ satisfying

$$
\int_{M_{4}} \alpha_{I} \wedge \alpha_{J}=K_{I J}
$$

where $K_{I J}$ is the intersection matrix on some basis of the 2-cycles.
(c) Show that $K_{I J}$ is symmetric.
(d) What is the intersection form on $S^{2} \times S^{2}$ ? On $\mathbb{C P}^{2}$ ? On $S^{4}$ ?
(e) Bonus: define the connected sum $X_{1} \# X_{2}$ of two $n$-manifolds $X_{1,2}$ to be the result of removing a small $n$-ball from each and gluing the resulting things together along the boundaries. What is the intersection form on $X_{1} \# X_{2}$ in terms of those of $X_{1}$ and $X_{2}$ ?
(f) Bonus: By thinking about the spectrum of the Hodge $\star$ operator on 2-forms, relate the signature of the matrix $K$ (the number of positive eigenvalues minus the number of negative eigenvalues) to the Hirzebruch signature of $M_{4}$.
(g) Bonus: argue that $K_{I J}$ is unimodular, that is, it satisfies det $K= \pm 1$.
2. Dimensional reduction exercise. Consider the following 3-form $U(1)$ gauge theory in $6+1$ dimensions. The degree of freedom is a 3 -form potential $C$. Consider the action

$$
S[C]=\frac{1}{4 \pi} \int_{M_{7}} C \wedge d C
$$

where $M_{7}$ is some smooth manifold. A field theory with this action is topological in the sense that no metric was required to write down the action.
(a) Show that $S$ is gauge invariant if $M_{7}$ is closed, $\partial M_{7}=0$. The infinitesimal gauge transformation acts as $C \rightarrow C+d \lambda$ for some 2-form $\lambda$.
(b) Consider the case where $M_{7}=M_{4} \times \mathbb{R}^{3}$, where $M_{4}$ is some 4-manifold. Suppose that the intersection form on $M_{4}$ is $K_{I J}, I=1$.. $\operatorname{dim} H_{2}\left(M_{4}, \mathbb{Z}\right)$ Plug in $C=\sum_{I} \alpha^{I} \wedge A^{I}(x)$, where $\alpha^{I}$ are the basis of harmonic 2-forms on $M_{4}$ from the previous part, and find the resulting 3d action for $A^{I}$.
3. Fundamental group of an acyclic space. In lecture we defined $X$ by gluing two disks $B_{1,2}$ into a bouquet of two circles $a$ and $b$ by identifying their boundaries with the paths $a^{5} b^{-3}$ and $b^{3}(a b)^{-2}$. Use the van Kampen theorem twice to compute $\pi_{1}(X)$. That is, first use it compute $\pi_{1}\left(X \backslash B_{1}\right)$.
4. Induced map on homotopy groups. Like homology, $\pi_{q}$ is a covariant functor from the category of topological spaces (and continuous maps) to the category of groups (and group homomorphisms). To see this, consider a map $\phi:\left(X, x_{0}\right) \rightarrow$ $\left(Y, y_{0}\right)$. Given a representative of $\pi_{q}(X), \alpha:\left(I^{q}, \partial I^{q}\right) \rightarrow\left(X, x_{0}\right)$, we can use $\phi$ to make a representative of $\pi_{q}(Y)$, namely $\phi \circ f:\left(I^{q}, \partial I^{q}\right) \rightarrow\left(Y, y_{0}\right)$. So we can define an induced map on the homotopy groups

$$
\phi_{\star}[\alpha] \equiv[\phi \circ f] .
$$

Convince yourself that this is a group homomorphism in the sense that $\mathbb{1}_{\star}=\mathbb{1}$, $\phi \circ(\alpha \star \beta)=(\phi \circ \alpha) \star(\phi \circ \beta)$ and given also $\psi:\left(Y, y_{0}\right) \rightarrow\left(Z, z_{0}\right)$, we have $\psi_{\star} \circ \phi_{\star}=(\psi \circ \phi)_{\star}$.

Conclude that if $X \simeq Y$ then $\pi_{1}(X) \cong \pi_{1}(Y)$.

## 5. $\mathbb{C P}^{2}$ is not anyone's boundary.

In this problem we will show that the boundary of any compact manifold has even Euler character. Since $\chi\left(\mathbb{C P}^{2}\right)$ is odd, it cannot arise as the boundary of any compact 5 -manifold.
(a) Here we will show that if $M=\partial V$ is a $2 n$-dimensional manifold and $V$ is compact, then $\operatorname{dim}_{\mathbb{Z}_{2}} H^{n}\left(M, \mathbb{Z}_{2}\right)$ is even. (If we assume $V$ is oriented, then we can replace $\mathbb{Z}_{2}$ by any other field.)
Consider the following part of the long exact sequence for the homology of $V$ relative to its boundary $M$ :


All coefficients are $\mathbb{Z}_{2}$. The vertical maps $f$ and $g$ are isomorphisms because of Poincaré duality (the one that relates homology and cohomology).
Use the fact that $\operatorname{rank}\left(i_{\star}\right)=\operatorname{rank}\left(i_{\star}\right)$ and the diagram to conclude that $\operatorname{dim} H^{n}(M)=2 \operatorname{rank}\left(i^{\star}\right)$.
(b) Show that if $M=\partial V$, then $\chi(M)$ is even. Consider separately the cases where $\operatorname{dim} M$ is odd and even.
Hint: in the case where $\operatorname{dim} M=2 n$, relate $\chi(M)$ to $\operatorname{dim}_{\mathbb{Z}_{2}} H^{n}\left(M, \mathbb{Z}_{2}\right)$.
(c) What is $\chi\left(\mathbb{C P}^{2}\right)$ ? Conclude that $\mathbb{C P}^{2}$ represents a nontrivial cobordism class.
(d) What about $\mathbb{R P}^{2}$ ? Can an unoriented closed compact Riemann surface be a boundary? (Use the same argument.)
(e) What about $\mathbb{C P}^{n}$ for general $n$ ?

