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In this paper, we articulate some key ideas pertaining to the rich subject of gapped boundaries
and domain walls in 2+ 1d topological phases. We also discuss an alternative perspective in deriving
boundary theories motivated by entanglement considerations.

I. INTRODUCTION AND PRELIMINARY

Topological phases and anyon condensation in two spa-
tial dimensions have been explored through the help-
ful paradigm of Levin-Wen models (LWMs), also called
string-net models [1]; the canonical LWM is the Zy toric
code (TC). These models require an arbitrary unitary
tensor category C as input, and define a lattice whose
bulk excitations belong to Z(C), the monoidal center
of C. However, gapped boundaries of 2+1d topological
phases require additional mathematical structure, first
elucidated by Kitaev and Kong in [2]. Though [2] was
seminal, more pedagogical treatments are found in [3, 4].

This paper will be structured as follows: in the rest of
I, we will introduce the basic categorical language under-
lying 2+1d topological phases (we assume the reader is
familiar with the essential physics); in II, we will sum-
marize the treatment of gapped boundaries through the
Frobenius algebra describing the boundary condensate;
in ITI, we will describe about an alternative treatment of
boundary theories that follows from considerations about
the ground state entanglement data; in IV, we offer some
future directions of study.

A braided, fusion tensor category is the input for 24+1d
topological order. It consists of simple objects ¢; which
describe different species of point excitations (1,e,m, f
in TC). Physically relevant categories are semi-simple,
meaning that every object a is a direct sum of simple
objects a = ®;mqici, a,c; € C, my; € Z>o.

Morphisms f are structure-preserving maps f €
Hom(a, b) between objects a,b € C that describe phys-
ical processes. For example, there is only a map be-
tween ¢; and ¢; only if ¢ = j. The number of
maps depends on the particle type. For example, if
¢; is a boson, it has a one-dimensional endomorphism
space i.e. dimHom(¢;,¢;) = 1.  Correspondingly,
dim Hom(®;mic;, Dinici) = Y, min;. In this way, we
can label a morphism from ¢; to a through basis vectors
¢; = a with o = 1... dim Hom(¢;, @). Under conjugation,
each anyon is replaced is replaced by its dual.

The anyons (simple objects) obey a (commutative, as-
sociative, distributive) fusion algebra a @ b = Y N¢c,
NS, = dimHom(a ® b, ¢), and there is a trivial object 1
that represents the vacuum. This can be represented di-
agrammatically as a fusion vertex labeled by p = 1...N;.
The eigenvalues of the object N¢, are known as the quan-
tum dimensions and satisfy dqdy, = NS5 de. A loop of
anyon a evaluates to d,. Associativity (a ® b) ® ¢ =

a® (b® c) gives rise to an isomorphism between the as-
sociated fusion vector spaces, which in a particular basis
is called the F-matrix or associator. Consistency then
implies the famous pentagon equation. Lastly, we can
introduce braiding to describe moving a line around an-
other line. This introduces the famous R symbol and
hexagon equation. See [3, 4] for a fuller treatment with
illustrations!

Note that to describe fermion condensation, one has
to consider a super-fusion category, which we will not
get into for reasons of brevity, but one of the primary
differences is the endomorphism space of simple objects
is expanded to allow fermion parity odd maps [5].

II. ESSENTIAL CONCEPTS IN THE
CATEGORY THEORY OF THE BOUNDARY

The physics of gapped boundaries of 2+1d bosonic,
non-chiral topological orders (e.g. the point-like excita-
tions and their fusion data) are determined by the bound-
ary condensate, which is characterized by its commuta-
tive, separable, symmetric Frobenius algebra A. For ex-
ample, in TC, at a rough boundary e particles condense,
there is only one point-like excitation m = f.

More precisely, an algebra A in a category C is a
collection of simple objects A = @®;Wiic;, Wii € Z>o,
that is equipped with a (trivially) associative product
uw: Ax A — A and unit morphism iy and acts triv-
ially on the algebra. In the TC with rough boundary,
A = 1® e. In algebras, the unit 1 appears only once.
We can express the product p in terms of the Hom basis
in C, by expanding A in terms of its simple objects and
using the fusion product in C'. A co-algebra, on the other
hand, has a co-product A : 4 — A x A and a co-unit
€4. The co-product describes splitting e.g. in a SU(2)
gauge theory, where the simple objects could be irreps
of SU(2), splitting could be a process by which a spin S
decomposes into two spins S = 51 4+ S2. See Fig. 1 for an
illustration of these concepts.

The boundary condensate is described by a Frobenius
algebra, which is an algebra and a co-algebra. Consis-
tency and the various qualifiers imply a number of dia-
grammatic identities, which can be found in the [2]. The
point of all these additional conditions, which happen to
have fancy mathematical names, is that the condensate
should basically behave like the vacuum at the bound-
ary: you can freely fuse it, braid it, apply F' moves, etc.



without changing anything. This is consistent with our
discussion of boundary conditions in the toric code, in
which the condensed anyon “disappears” at the bound-
ary. Fermions condensates are slightly trickier, because
the fermion condensate has non-trivial braiding.

The gapped, boundary excitations (or defects) are then
described by the different representations (or modules)
of the condensate algebra. Note that for a 1d boundary,
the category describing the excitations isn’t necessarily
braided. Consider the rough boundary of the toric code
again, where the bulk excitations m, f are indistinguish-
able at the boundary. Nonetheless, when fusing with the
condensate 1 @ e, they transform into eachother. This
is what it means for the boundary excitations to form a
representation of the condensate algebra. Furthermore,
the representations of the condensate algebra A form a
fusion category, and therefore have well-defined fusion
rules.

A module M of A in C is also a collection of anyons
M = ®;W;pe;. The module M carries maps M — C
and C' — M, these are the projection and inclusion maps
between M and simple objects in C. They satisfy pre-
dictable completeness and orthogonality relations. Fur-
thermore, since M forms a representation of A, there is
a linear map p% : A x M — M which satisfies a homo-
morphism property i.e. acting with A on M twice is like
acting with A on A and then acting on the product on
M. See Fig. 2 for the precise diagrammatic equations. If
we act with A on M from the left (right), M is a left
(right) module. As a technical aside, left and right mod-
ules are related by twisting. Much of the mathematics
here is worked out in [6] in the context of conformal field
theory.

Similar to representation theory modules also satisfy a
version of the grand orthogonality theorem (see Fig.2).
Furthermore, their matrix elements form a basis. Con-
sequently, any morphism ¢ € Hom(A ® j, k) can be ex-
pressed as a linear combination ¢ =, Aar,{a} pMied
of linear “representation” matrices labeled by the “ir-
rep” M. A module M may be induced by the product
structure p on A, denoted pryq a(c,)- This module is in
general reducible, and can be used to ascertain the simple
(irreducible) modules [3]. Thus, calculating the bound-
ary excitations reduces to the problem of determining the
matrix W, whose matrix elements are labeled by simple
objects ¢; in C' and irreducible modules M. Like the
character table for finite groups, the rows and columns
of this object sum to various dimensions associated to
the category (see section 2.3.2 of [3]).

The fusion ® 4 between boundary excitations M7, My
are determined from the condensate A and the bulk
fusion rules. ~ The new fusion coefficients n;, =
dim Hom 4 (M, ® 4 My, M) can be determined by con-
sidering the fusion of two bulk anyons with A. What
about a gapped interface separating two distinct topolog-
ical phases? In a sense, this is a special case of what we
have already been discussing: if we fold the two dimen-
sional system, the gapped interface becomes a gapped

boundary [2]. More prosaically, defects at a junction are
understood in terms of bi-modules characterized by left,
right condensate algebras A, B, respectively. Its exci-
tations can be ascertained by considering the fusion of
A ® ¢; ® B that induces a reducible bi-module.

III. AN ALTERNATIVE APPROACH

The approach outline above is based on certain reason-
able assumptions about the condensate algebra. Further-
more, it is largely independent of any microscopic details
about the system. This makes it sometimes difficult to
apply it to physical systems, where it is not a priori clear
what, for example, A, M, and W are. An alternative
approach to studying gapped boundaries can be found
in the entanglement bootstrap [7]. This approach takes
as a starting point the conjectured form of the ground
state entanglement in 2+ 1d gapped systems. Amazingly,
the various categorical underpinnings of topologically or-
dered systems, e.g. anyons, fusion rules, multiplicities,
etc., can be derived solely from two axioms that follow
from the entanglement area law [8].

One of they key objects in this approach is the infor-
mation convex set (2, o), defined on a reference ground
state o (satisfying the proposed entanglement axioms)
and region 2, which is the set of reduced density matri-
ces p on () that match o on balls inside €2. This set is
unchanged under continuous deformations of 2 and its
extreme points satisfy a factorization condition. More-
over, the extreme points, which correspond to orthogonal
states supported on different subspaces, are of physical
significance since they define new superselection sectors
(when © is an annulus). The fusion information is then
derived by considering the information convex set of the
two-hole disk.

Extending the analysis to systems separated by a
gapped domain wall, this approach finds a new set of
superselection sectors, called parton sectors. In doing
so, the entanglement axioms are relaxed. Parton sec-
tors don’t necessarily describe low-energy excitations—
though, their composite sectors do include the point-like
excitations we usually think of, hence the name parton.
They can be localized to either side of the domain wall.
Furthermore, they don’t fuse in an ordinary way, but
rather quasi-fuse. The existence of certain parton sectors
is determined by measuring the entanglement of certain
banana-shaped boundary regions. Interestingly, these re-
gions also allow one to define a notion of topological en-
tanglement entropy for the boundary theory.

IV. CONCLUSION

There are many remaining directions of inquiry, e.g.
is there a sense in which the boundary excitations can
be braided? Are there topological phases that cannot be
separated by a gapped domain wall? Is there a similar



framework for discussing gapless boundary defects? How
should either of the outlined approaches be modified in
the presence of symmetries? What about higher dimen-
sions? etc. We hope this brief article elucidates some of
the key ideas regarding gapped boundaries of topological
phases and encourages future research in this complex

and evolving field.
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FIG. 1. Some diagrammatic identities on the condensate al-
gebra A found in [3]. In (a,b), we see the expansion of the
(co)product on the (co)algebra in terms of the Hom space in
C. In the sum, i, j, k are simple objects, and «, 3,~ label the
morphism basis from A to i, j, k respectively. Additionally, ¢
labels the fusion channel ¢ = 1...dimHom(: ® j, k). In (c),
we see the defining properties of the unit and the co-unit,
respectively.
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FIG. 2. Some diagrammatic identities on the defect module
M found in [3]. In (a), we represent the projection and ex-
tension maps between M and simple objects in C. In (b), we
show the decomposition of the module into morphisms in C.
In (c), we illustrate the homomorphism property of M, which
makes it a representation. In (d), we convey the version of
the grand orthogonality theorem for modules, showing that
different simple modules are orthogonal in a way similar to
characters of irreps.
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