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This paper shows a possible way to experimentally realize the topologically ordered system in cold
atom system named Rydberg Blockade model. And also the experimental strategy to directly access
the topological loop operators measurement and the realization of topological boundary conditions.
Please see the original paper if interested https://arxiv.org/abs/2011.12310.

INTRODUCTION

The physical realization of Z2 topological order as en-
countered in the paradigmatic toric code has proven to be
an elusive goal. This paper shows that this phase of mat-
ter can be created in a two-dimensional array of strongly
interacting Rydberg atoms. One can find a topological
quantum liquid (TQL) as evidenced by multiple measures
including: (i) a continuous transition between two fea-
tureless phases, (ii) a topological entanglement entropy
of ln2 as measured in various geometries, (iii) degenerate
topological ground states. Moreover, one can directly ac-
cess the topological loop operators of this model, which
can be measured experimentally using a dynamic proto-
col, providing a ”smoking gun” experimental signature of
the TQL phase. Finally, the paper shows how to trap an
emergent anyon and realize different topological bound-
ary conditions.

RYDBERG BLOCKADE MODEL

We consider hardcore bosons on the links of the kagome
lattice with a two-dimensional version of the Fendley-
Sengupta-Sachdev model:
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We set Ω > 0 .For Rydberg atoms, V (r) ∼ 1

r6
. Here

we conseder a simpler blockade in a particular disk:

V (r) =

{
+∞ if r ≤ 2a

0 if r > 2a.
(0.2)

FIG. 1: Rydberg blockade model and relation to dimer model. (a)
Hardcore bosons on the links of the kagome lattice (forming the
ruby lattice) are strongly-repelling, punishing double-occupation
within the disk r ≤ r3 = 2a. (b) An example of a state consistent
with the Rydberg blockade at maximal
lling. (c) Since the blockade forbids occupation of any two touch-
ing bonds, we can equivalently draw the configuration as a dimer
covering on the kagome lattice.

Here the lattice spacing a is the shortest distance be-
tween two atoms. As shown in Fig.1(a), with this inter-
action range, a given site is coupled to six other sites,
which are ordered in pairs at distances r1 = a, r2 =

√
3a

and r3 = 2a. The Rydberg blockade implies that any
two sites within this distance cannot both be occupied
(Fig. 1(b)), which we can interpret as a dimer state on
the kagome lattice if the system is at maximal filling (see
Fig. 1(c)).

PHASE DIAGRAM

We now study the phase diagram of the model in
Eq.(0.1) with the blockade in Eq.(0.2) using the density
matrix renormalization group (DMRG). One can explic-
itly ecgorce V (r1) = +∞ and V (r2) = V (r3) = 50Ω by
working in the reduced Hilbert space where each trian-
gle of the kagome lattice (containing three atoms) only
has four states: empty or a dimer on one of the three
legs. When δ

Ω is low enough, the system is adiabatically
connected to the empty state and is thereby completely
trivial. For very large δ

Ω we enter the regime that is per-
turbatively described by a dimer model.Its ground state
spontaneously breaks crystalline symmetries and forms a
valence bond solid (VBS). Remarkably, for intermediate
δ
Ω , these two phases are separated by another feature-
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less phase, as shown in Fig.2 by the diverging correlation
length ξ and the entanglement entropy S between two
rings of the cylinder. This intermediate phase can be
identified as a Z2 spin liquid by comparing the entangle-
ment entropy.

One characteristic feature of topological phases of mat-
ter can be found in the scaling of the entanglement en-
tropy. Gapped phases of matter satisfy an area law: for
a region with perimeter L, we have S(L) = αL− γ. For
a Z2 spin liquid, γ = ln2. We take a point in the middle
of the presumed spin liquid say δ

Ω = 1.7, and numerically
obtain the entanglement entropy upon bipartitioning the
infinitely long cylinder in two halves. Doing this for dif-
ferent circumferences, one extracts γ ≈ ln2 as shown in
Fig.3. For comparison, for a point in the trivial phase
( δΩ = 1), one can find γ ≈ 0.

FIG. 3: Topological entanglement entropy.

STRING OPERATORS AND ANYON
CONDENSATION

The two string operators are the ’t Hooft line eiπ
∫
E

and the Wilson line ei
∫
A which anticommute at inter-

section points. The string operator eiπ
∫
E corresponds

to the parity of dimers along a string. To be precise,
we define its action on a single triangle in Fig.4(a) (or-
ange dashed line); we refer to this diagonal parity string
as P . In the dimer basis, the dual string ei

∫
A has to

be off-diagnal, such a string has a well defined action on
single triangles, as shown in Fig.4(a) (solid blue line);
we refer to this string as Q. The electric e and mag-
netic m excitations of this Z2 lattice gauge theory live
at the endpoints of the Q and P strings, respectively.
The spin liquid is defined by the deconfinement of these
excitations. The nearby phases correspond to condens-
ing either the e or the m, which respectively condenes
m or e due to the mutual statistics. These condensates
can be diagnosed by the open P or Q strings attaining

long-range order. Generically these strings will decay to
zero since the ground state has virtual e and m fluctu-
ations. For this reason, Bricmont and Frohlich and Fre-
denhagen and Marcu independently introduced the nor-
malized string operator in Fig.4(c), which we will refer
to as the BFFM string order parameter. Evaluating the
BFFM string order parameter for the Rydberg Blockade
model, we see that Q only has long-range order in the
trivial phase corresponding to an e-condensate whereas
P only has long-range order in the VBS phase corre-
sponding to an m-condensate. In the intermediate spin
liquid, both BFFM order parameters decay to zero, con-
sistent with the claim that this is the deconfined phase
of the lattice gauge theory.(As shown in Fig.5).

FIG. 5: Diagnosing phases in terms of topological string operators.
One can find that the trivial phase is an e-condensate and the VBS
phase is an m-condensate.

MEASURING AN OFF-DIAGONAL STRING BY
TRANSFORMING IT INTO A DIAGONAL

STRING

By measuring the string opertors introduced above,
one can identify the spin liquid and its nearby phases.
The parity string P can be straight forwardly measured
in the lab since it is diagonal in the occupation basis and
can be read off from the snapshots of the Rydberg states.
The off-diagonal string Q is more challenging to mea-
sure directly. Actually by time-evolving with a quenched
Rydberg Hamiltonian, it becomes a diagonal observable,
making it experimentally accessible.
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It is thus sufficient to consider a single triangle, and

by writing the P and Q operators defined in Fig.4(a)
as 4× 4-matrices acting on the Hilbert space of a single
triangle, one straight forwardly derives:
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FIG. 2: Phase diagram of Rydberg blockade model on the links of the kagome lattice.

FIG. 4: Topological string operators. (a) The two different string operators are defined by their action on a single triangle. We call the
diagonal and off-diagonal string operators P and Q, respectively. (b) An example of the action of the string operators on a classical

dimer state. (c) The defination of the BFFM order parameter

Thus, one can effectively measure Q along a string by
first time-evolving with H ′ and then measuring the P
string on the resulting state.

CREATING TOPOLOGICAL DEGENERACY ON
THE PLANE

There are two topologically-distinct boundary condi-
tions for a Z2 spin liquid. These are characterized by
whether the e or m anyon condenses at the edge. If
one interprets a boundary as a spatial interface from the
topological phase to a non-topological phase, it is natu-
ral that the characterization of the nearby phases carries
over to describe boundary conditions. Similarly, these e
and m condensates along the boundary can be diagnosed
using the string operators introduced above.

One can numerically determine the resulting boundary
phase diagram for the blockade model on an infinitely-
long strip geometry, where we choose the bulk to be
deep in the spin liquid at δ

Ω = 1.7. The results are

shown in Fig.6. In line with the above expectation,
we see that before we change the boundary detuning,
i.e., δbdy = δ the strip realizes an m-boundary. As we
reach δbdy ≈ 0.5δthere is a boundary phase transition
(where the correlation length diverges along the infinite
direction) after which the parity string dies out, mak-
ing way for a strong signal for the Q string. In this
regime, we stabilize the e-boundary. As we further de-
crease δbdy → 0, we are effectively removing these links
from the model, with the remaining geometry again spon-
taneously realizing an m-boundary. Using the knowledge
of the above boundary phase diagram, it is now straight-
forward to construct a rectangular geometry with a topo-
logical ground state degeneracy. A schematic picture is
shown in Fig.7: a square slab where the four boundaries
are alternatingly e- and m-condensed.
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FIG. 6: Boundary phase diagram of the blockade model. The bulk is the spin liquid at δ
Ω

= 1.7, but we tune δbdy on the outermost
boundary links.

FIG. 7: Alternating e- and m-condensed boundaries imply a
twofold degeneracy

OUT LOOK

The paper has demonstrated that Rydberg blockade
on the ruby lattice can be utilized to stabilize a Z2 spin
liquid. Specifically, the theoretical predictions outlined
above can be probed using programmable quantum
simulators based on neutral atom arrays trapped in
optical tweezer arrays. In particular, the required atom
arrangements can be realized using demonstrated atom
sorting techniques, while relevant effective blockade
range can be readily implemented using laser excitation
into Rydberg states with large principle quantum num-
ber 60 < n < 100. The spin liquid phase can be created
via adiabatic sweep of laser detuning, starting from the
disordered phase to a desired value of positive detun-
ing, as demonstrated previously for one-dimensional
systems. Potentially, these systems can explored for the
realization of topologically-protected quantum bits, with
an eye towards developing new, robust approaches to
manipulating quantum information.
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