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We explore the interplay between Supersymmetry, lattice fermions, cohomology and tic-tac-toe

lemmal[1].

By exploiting supersymmetry, the number of the ground states for strongly-interacting

spinless fermions on different lattices can be computed with the help of tic-tac-toe lemma.

I. INTRODUCTION

The motivation to study supersymmetric lattice
fermion model is two-fold. From physics side, the mo-
tivation is to study the electrons in the presence of
strong repulsive interactions. However, these strongly-
interacting systems are notoriously difficult to solve.
With commanding the supersymmetry (SUSY) in the
lattice fermion model, we can obtain some exact re-
sults. These results give us some hints about how these
strongly-interacting electrons would behave. From math
side, this study can give the result of the cohomology
on different lattices or graphs. This relies on the equiva-
lence between computing the number of the ground state
in SUSY lattice model and the calculation of the coho-
mology on the same lattice.

In this paper, I will start from defining the supersym-
metric lattice fermion model in Sec. II. Next, the connec-
tion with mathematical part, cohomology and tic-tac-toe
lemma would be introduced in Sec.IIT and Sec.IV. Fi-
nally, I will go through some applications of how tic-tac-
toe lemma helps computing the cohomology in different
1d and 2d lattices (Sec.V, Sec. VI and Sec. VII).

II. MODEL [2, 3]

In this section, I will start with defining the lattice
fermion and how to construct the supercharge operator
(the basic property of the supersymmetry theory can be
found in Chapter 2 of Professor John Mcgreevy’s "Topol-
ogy from physics” note). The operator ¢;/ c;f annihi-
lates/creates a fermion on site ¢ and they satisfy the anti-
commutation relations

{cl,ei} = 0ij. {circ;} = {c],cl} = 0. (1)

Next, we can define the supercharge operator in terms

of these fermionic operators ci,cz. Note that the super-

charge operators need to satisfy the nilpotency condition

(Q? = (Q")? = 0). A simple choice of the supercharge

operator would be @ =3, c}. The resultant Hamiltonian
would be a trivial constant,

HZ{QT»Q}:Z%':L (2)
5]
There is no ground state with £ = 0 in this Hamilto-

nian. All states come in pairs of opposite fermion par-
ity. A nontrivial choice of the supercharge operator is

Q=>, CZ.PZ' where the projection operator P; can be
defined as P; = >, o 04(1 — c;cj). The operation of
Q@ is to add the fermion on site ¢ only when the adjacent
sites to site ¢ are empty. The Hamiltonian is

Z PiCICij + Zpi. (3)

7,J next to ¢ i

H =

The first term allows the movement of the fermion from
i-site to j-site only when the sites adjacent to both of
them are empty. The second term can be rewritten in a
better form as

ZPZ-:L—ZZCICZ-—FZVM (4)

where 2 is the coordination number, V;y +1 is the num-
ber of particles adjacent to the site ¢. When there is no
particle around the site i, Vi;y = 0. Therefore, the en-
ergy penalty is the same for no particle and one particle
around the site 7. This is actually an very interesting in-
teraction. To minimize the energy, the second chemical
potential term tends to add more particles into the sys-
tem. However, if there are particles, the penalty from the
last term would show up. To compromise, the average
separation between two electrons should be 3 sites in the
optimal particle numbers. This is called ”3-rule”[4]. In
fact, we would more focus on the supercharge operator
Q itself in the following discussion since the ground state
lgs) with E = 0 would satisfy Q|gs) = QT|gs) = 0.

III. THE GROUND STATE AND
COHOMOLOGY]1]

Based on the supercharge operator, it’s easy to write
down possible particle configurations. To label differ-
ent particle configurations, we utilize the particle-number
symmetry to label each particle configuration. Thus, the
full Hilbert space can be decomposed as H = @, _, 2y
where €2, is the subspace spanned by all possible config-
urations with n particles. The supercharge operator
maps from €, to Q,41 as

(TSN o M o TR A (5)

Then, we can define the cohomology Hgl) of @ as
ket@/Im@ within €,,. The element in the cohomology
™ s equivalent with the ground state |g,,) in Q. This



is because the ground state in the supersymmetric lattice
model |g) satisfies Q|g) = Qf|g) = 0. This implies that
the ground state is in the kernel of @ and can not be
expressed as Q|i), which is equivalent with the element

in H é)n) . The corresponding Witten index would become

W = Tr[(—1)"dimH"].

Let’s consider a simple example, a periodic chain with
3—sites. I use the binary string to label the particle con-
figuration where 1/0 stands for the occupied /unoccupied
site. The full Hilbert space is {000} {001, 010, 100}.
The supercharge operator is

Q= C]iljempty 2,3+ C;P)empty 1,3+ C;zjjempty 1,2- (6)

The detailed calculation is shown in Appendix A. The
result shows that there are 2 fermionic ground states.
Different boundary condition also affects the ground state
degeneracy (also discussed in Appendix A).

IV. 'TIC-TAC-TOE’ LEMMA][1]

In Sec. III, we learn how to compute the ground state
degeneracy by explicitly constructing all possible particle
configurations. However, this method is impossibly ap-
plicable to a larger system. The ’tic-tac-toe’ lemma can
save us.

Let’s first decompose the full lattice S into two sub-
lattices S; and S3. We can rewrite the supercharge op-
erator QQ as Q = Q1 + Q2 where Q; = Zjesi cj-Pj. The
subspace €2, then becomes €2, = @p+q:n K, , where
p/q is the number of fermions in the sublattice S;/Ss.
Note that the operations of 1 and Q2 are Q; : K, 4 —
Kpi1,4,Q2 : Kp g = K g1+1 (like the diagram in Fig. 1).

TQQ TQQ TQ2

Kop g Kip g Koo g
T Q2 T Q2 T Q2
Ko g Ky g Ko, g
T Q2 T Q2 T Q2
Koo & Ko g Ko g

FIG. 1. The diagram of the tic-tac-toe procedure[l].

The ’tic-tac-toe’ lemma says that the cohomology Hg
is equal to Hg, (Hg,) = Hio if all nontrivial elements
in Hy» have the same particle numbers on S,. If
the sufficient condition is not satisfied, further work is
required to connect Hiy with Hg.

Let’s show the power of 'tic-tac-toe’ lemma in a 1d pe-
riodic chain with 9-sites. I choose sites 3,6,9 in Sy and

the rest of the sites in S;. To compute Hio, we start with
finding Hq,. Since each site in Sy is not adjacent to each
other, we can consider them independently. This is also
the reason why this setup is used. Take the site 3 as an
example. There are two possibilities, occupied or unoccu-
pied. If the site 3 is occupied, then this configuration |i)1)
is exact [¢1) = Q2]¢) and is excluded in H,. If the site 3
is unoccupied with empty adjacent sites, this configura-
tion [12) would not be close since Q2|12) # 0. The only
nontrivial possibility is that the site 3 is unoccupied due
to the filled adjacent site. Therefore, either site 2 or site
4 is filled. This result can be applied onto each site in Sy
independently. Here, one might guess there would be to-
tal 22 = 8 configurations. However, we also need to make
the particles in S; not adjacent to each other. If we start
from filled site 4, the sites 7 and 1 would also be the filled
sites. There are only two different configurations in Hg,,
[100100100) and [010010010). They are both close under
()1 and not exact since there is no element |¢) in Hg,
such that |100100100) = Q1|¢) or |010010010) = Q1|®).
We can conclude there are two nontrivial cohomology
classes in Hips for 3 particles. The cohomology for all
the other particle numbers is trivial. Since the particle
number in S is the same for these two configurations,
there are also two nontrivial cohomology classes for Hg.
Similarly, this choice of S;,S52 can be used to compute
the cohomology class for all the open/periodic chain with
arbitrary lengthes. Their results are as follows:

The cohomology of @ on the periodic chain with L
sites has:

e 2 non-trivial cohomology classes with j fermions if
L =3y

e 1 non-trivial cohomology classes with j fermions if
L=3j+1/3j—-1

The cohomology of @ on the open chain with L sites
has:

e 1 non-trivial cohomology classes with j fermions if
L=3j/3j—1

¢ 0 non-trivial cohomology classes with j fermions if
L=3j+1

V. A SIMPLE 2d EXAMPLE: MARTINI
LATTICE[4]

Even though the tic-tac-toe lemma can save us in the
previous 1d chain, one might wonder whether this sim-
plicity can be generalized into higher dimension. In this
section, I will introduce a simple 2d Martini lattice and
show that the construction of the nontrivial cohomology
classes is similar with 1d chain. Eventually, the num-
ber of the ground states is equal to the number of dimer
covering of the honeycomb lattices.

The Martini lattice is formed by replacing every other
site in a hexagonal lattice with a triangle. S; is cho-
sen as the sites in the triangles. The rest of the sites



are in S5. Note that each site in S5 is not adjacent to
each other again. Let’s construct the possible configu-
rations in Hg,. Based on our previous experience, our
ultimate goal is to make every sites in Sy unoccupied
non-trivially. This turns out to make one of the adjacent
sites in 57 filled. One of the possible particle configura-
tions is shown in Fig.2. Constructing the ground state
in the Martini lattice is easy but counting the total num-
ber is not simple. One way is to define a dimer for each
site in S7 and the orientation is determined by the cor-
responding filled site in S5. The number of the ground
states turns into the number of dimer covering of the
honeycomb lattices[5]. In fact, the entropy of the ground
state (S = log(number of ground states)) increases lin-
early with the system size which suggests that the system
is ”super-frustrated”[4].

2

FIG. 2. One of the possible particle configurations of the
ground state in Martini lattice[4].

VL. 2d SQUARE LATTICE: TILTED
RECTANGLES]1]

After showing a special 2d example, I will get back
to the familiar 2d example, square lattice. Let’s focus
on a special example on the square lattice: tilted rect-
angle. The idea of defining the tilted rectangular is to
decompose a 2d plane in terms of a bunch of 1d chains.
The whole cohomology problem in the tilted rectangle
becomes the cohomology of many independent 1d chains.

The formal definition of the tilted rectangle R(M, N)
is as the points (z,y) which satisfy y <ax <y+ M —1
and —y+1 <z < —y+ N. The example of M = N =6 is
shown in Fig. 3. The central enclosed green square is the
tilted rectangle. The orange points are in S; The points
connected with blue curves are in S;. The points in S
are now not adjacent to each other which means that we
can independently put the electrons on the sites in S;.
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FIG. 3. The tilted rectangle for M = N = 6.

Again, let’s start with computing Hg,. Since the sites
in Sy are independent chains, we can check individual
chains separately. My starting point is the left-lower
blue curve. When the corresponding right-upper orange
points are filled, they will lead to 3 free and unoccupied
sites in the left-lower blue curve (red points). These free
and unoccupied sites would not be in Hg,. Thus, all
these three orange points should be unoccupied. By per-
forming this analysis for each chain, we can conclude all
sites in S are unoccupied. Each chain in S5 now becomes
an independent open chain and the previous result of the
open chain can be directly used here. The length of each
open chain is M. The cohomology of the tilted rectangle
is

e 1 non-trivial cohomology classes with j fermions if
M=3;/3j—1

¢ 0 non-trivial cohomology classes with j fermions if
M =3j+1.

VII. 2D SQUARE LATTICE ON THE TORUS

The simplicity in the tiled rectangles relies on those
isolated sites in each chain. If we apply the periodic
boundary condition on the end points of the chain, the
cohomology can be still easily computed from the previ-
ous result of the periodic chain. However, if the square
lattice is doubly periodic, there are no such isolated sites
and the same trick can not be applied. For doubly pe-
riodic lattice, some sites in S would be also filled. The
detailed discussion of finding Hi» = Hq,(Hg,) can be
found in[1]. The basic idea is to start from filling sites in
S1. Then, some sites in Sy become forbidden to be occu-
pied and those free sites would form open chain. The full
chain consists of many open segments. Since we know
the cohomology of the open segment with 35 + 1 sites
is trivial, this leads to a constraint for the particle con-
figurations in S;. These configurations would form Hg,.
Finding Hio requires the discussion of the elements in



Hg, with different particle number in S5. Since the con-
figurations now have different particle number in Sy, tic-
tac-toe lemma is not guaranteed to work. Therefore, the
last work is to construct Hg from the elements in His.
Basically, we need to apply @ onto the element |¢) in
Hia, Ql¢) = Q1]¢). The operation of Q5 is guaranteed
since this element is chosen from Hg,. However, the oper-
ation of ()1 is not necessarily to vanish since the subspace
is not limited in Hg,. By expressing Q|¢) = Q2|¢), we
can define a new state |¢p1) = |¢) — ). If Q|o1) = 0,
the state |¢1) is in the kernel of Q. However, if Q|¢1)
belongs to another element |¢~)> in Hjg, neither of |¢) nor
|<§> are not in the kernel of Hp. With this procedure, we
can build the connection between Hg and Hi».

VIII. SUMMARY

In this paper, we started from the definition of the
SUSY lattice fermion model and built the connection be-

tween the number of the ground state and the cohomol-
ogy. Furthermore, we utilize the tic-tac-toe lemma to
help solving the cohomology on different 1d and 2d lat-
tices. An interesting direction to explore in the future
would be whether the same method can be applied to
the spinful fermions.
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Appendix A: Cohomology calculation and the ground state in SUSY Lattice Fermion Model

For a periodic chain, one can have Cy = {000}, C; = {100,010,001},Cy = {0}. For clarity, let’s write down the
supercharge operators explicitly,

Q = C{Pempty 2,3 + C;Pempty 1,3 + C;,Pempty 1,2 (Al)

QT = clpcmpty 2,3+ C2]Dcmpty 1,3+ CBPempty 1,2-

Let’s explicitly compute cohomology of @ on each n particle subspace C,,. For Cy, the image of @ is {} since there is

no C_;. The kernel is also {} since @Q|000) # 0. Thus, HS)) = 0. For n = 1, the image of @ is |100) + |010) + |001)
which suggests the equivalence relation |001) = —|100) — |010). The kernel of @ is {100,010,001} since Q|100) =
Q)010) = Q|001) = 0. Thus, we have 2 nontrivial cohomology class Hg) = {100,010}. For n = 2,Hg) = 0 since the
kernel and the image of @) are both zero.

For an open chain, one can have Cy = {000},Cy; = {100,010,001},Cs = {101},C5 = {0}. The supercharge
operators are a little bit different from the periodic chain.

Q = CJ{]Dempty 2+ Cgpempty 1,3 + cgpempty 2 (A2)

QT = Clpempty 2+ CQPempty 1,3 + C3Pempty 2.

Again, we can compute cohomology of @ on each n particle subspace C,,. For Cy, the image of @ is {} since there is no
C_1. The kernel is also {} since |000) # 0. Thus, Hégo) = 0. For n = 1, the image of @ is |100) + |010) + |001) which
suggests the equivalence relation |[001) = —|100)—]010). The kernel of @ is {100,010} since Q(a|100)+b|010)+¢|001)) =
(a+¢)|101) = a = —c. Thus, the independent coefficients are a, b which suggests the independent basis is {100, 010}.

Thus, we only have 1 nontrivial cohomology class H"). For n = 2, H, g ) = 0 since the kernel is zero.
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