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We explore the interplay between Supersymmetry, lattice fermions, cohomology and tic-tac-toe
lemma[1]. By exploiting supersymmetry, the number of the ground states for strongly-interacting
spinless fermions on different lattices can be computed with the help of tic-tac-toe lemma.

I. INTRODUCTION

The motivation to study supersymmetric lattice
fermion model is two-fold. From physics side, the mo-
tivation is to study the electrons in the presence of
strong repulsive interactions. However, these strongly-
interacting systems are notoriously difficult to solve.
With commanding the supersymmetry (SUSY) in the
lattice fermion model, we can obtain some exact re-
sults. These results give us some hints about how these
strongly-interacting electrons would behave. From math
side, this study can give the result of the cohomology
on different lattices or graphs. This relies on the equiva-
lence between computing the number of the ground state
in SUSY lattice model and the calculation of the coho-
mology on the same lattice.

In this paper, I will start from defining the supersym-
metric lattice fermion model in Sec. II. Next, the connec-
tion with mathematical part, cohomology and tic-tac-toe
lemma would be introduced in Sec. III and Sec. IV. Fi-
nally, I will go through some applications of how tic-tac-
toe lemma helps computing the cohomology in different
1d and 2d lattices (Sec. V, Sec. VI and Sec. VII).

II. MODEL [2, 3]

In this section, I will start with defining the lattice
fermion and how to construct the supercharge operator
(the basic property of the supersymmetry theory can be
found in Chapter 2 of Professor John Mcgreevy’s ”Topol-
ogy from physics” note). The operator ci/c

†
i annihi-

lates/creates a fermion on site i and they satisfy the anti-
commutation relations

{c†i , ci} = δij , {ci, cj} = {c†i , c
†
j} = 0. (1)

Next, we can define the supercharge operator in terms
of these fermionic operators ci, c†i . Note that the super-
charge operators need to satisfy the nilpotency condition
(Q2 = (Q†)2 = 0). A simple choice of the supercharge
operator would be Q =

∑
i c

†
i . The resultant Hamiltonian

would be a trivial constant,

H = {Q†, Q} =
∑
i,j

δij = L. (2)

There is no ground state with E = 0 in this Hamilto-
nian. All states come in pairs of opposite fermion par-
ity. A nontrivial choice of the supercharge operator is

Q =
∑

i c
†
iPi where the projection operator Pi can be

defined as Pi ≡
∑

j next to i(1 − c†jcj). The operation of
Q is to add the fermion on site i only when the adjacent
sites to site i are empty. The Hamiltonian is

H =
∑

i,j next to i

Pic
†
i cjPj +

∑
i

Pi. (3)

The first term allows the movement of the fermion from
i-site to j-site only when the sites adjacent to both of
them are empty. The second term can be rewritten in a
better form as∑

i

Pi = L− z
∑
i

c†i ci +
∑
i

V⟨i⟩ (4)

where z is the coordination number, V⟨i⟩ + 1 is the num-
ber of particles adjacent to the site i. When there is no
particle around the site i, V⟨i⟩ = 0. Therefore, the en-
ergy penalty is the same for no particle and one particle
around the site i. This is actually an very interesting in-
teraction. To minimize the energy, the second chemical
potential term tends to add more particles into the sys-
tem. However, if there are particles, the penalty from the
last term would show up. To compromise, the average
separation between two electrons should be 3 sites in the
optimal particle numbers. This is called ”3-rule”[4]. In
fact, we would more focus on the supercharge operator
Q itself in the following discussion since the ground state
|gs⟩ with E = 0 would satisfy Q|gs⟩ = Q†|gs⟩ = 0.

III. THE GROUND STATE AND
COHOMOLOGY[1]

Based on the supercharge operator, it’s easy to write
down possible particle configurations. To label differ-
ent particle configurations, we utilize the particle-number
symmetry to label each particle configuration. Thus, the
full Hilbert space can be decomposed as H =

⊕
n=0 Ωn

where Ωn is the subspace spanned by all possible config-
urations with n particles. The supercharge operator Q
maps from Ωn to Ωn+1 as

Ω0
Q−→ Ω1

Q−→ Ω2
Q−→ · · · (5)

Then, we can define the cohomology H
(n)
Q of Q as

ketQ/ImQ within Ωn. The element in the cohomology
H

(n)
Q is equivalent with the ground state |gn⟩ in Ωn. This
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is because the ground state in the supersymmetric lattice
model |g⟩ satisfies Q|g⟩ = Q†|g⟩ = 0. This implies that
the ground state is in the kernel of Q and can not be
expressed as Q|ψ⟩, which is equivalent with the element
in H(n)

Q . The corresponding Witten index would become
W = Tr[(−1)ndimH(n)

Q ].
Let’s consider a simple example, a periodic chain with

3−sites. I use the binary string to label the particle con-
figuration where 1/0 stands for the occupied/unoccupied
site. The full Hilbert space is {000}

⊕
{001, 010, 100}.

The supercharge operator is

Q = c†1Pempty 2,3 + c†2Pempty 1,3 + c†3Pempty 1,2. (6)

The detailed calculation is shown in Appendix A. The
result shows that there are 2 fermionic ground states.
Different boundary condition also affects the ground state
degeneracy (also discussed in Appendix A).

IV. ’TIC-TAC-TOE’ LEMMA[1]

In Sec. III, we learn how to compute the ground state
degeneracy by explicitly constructing all possible particle
configurations. However, this method is impossibly ap-
plicable to a larger system. The ’tic-tac-toe’ lemma can
save us.

Let’s first decompose the full lattice S into two sub-
lattices S1 and S2. We can rewrite the supercharge op-
erator Q as Q = Q1 + Q2 where Qi ≡

∑
j∈Si

c†jPj . The
subspace Ωn then becomes Ωn =

⊕
p+q=nKp,q where

p/q is the number of fermions in the sublattice S1/S2.
Note that the operations of Q1 and Q2 are Q1 : Kp,q →
Kp+1,q, Q2 : Kp,q → Kp,q+1 (like the diagram in Fig. 1).

8

cohomology of Q. With the same line of reasoning we may also conclude
that the ground states are in one-to-one correspondence with the homology
of Q†. Finally, the Euler characteristic, defined in cohomology theory as

χ ≡
∑

n

[

(−1)ndimH(n)
Q

]

,

is precisely the Witten index.

3.3 The ’tic-tac-toe’ lemma

Central to the proof presented in this paper is the ’tic-tac-toe’ lemma of
[16]. Let us decompose the lattice S into two sublattices S1 and S2 = S \S1

and we write Q = Q1+Q2, where Q1 and Q2 act on S1 and S2 respectively.
We can then consider the double complex ⊕nCn = ⊕n ⊕p+q=n Kp,q, where
p (q) is the size of the vertex set on S1 (S2). Equivalently, if we define fi as
the number of particles on Si, we have f1 = p and f2 = q. Finally, we have
Q1 : Kp,q → Kp+1,q and Q2 : Kp,q → Kp,q+1. The ’tic-tac-toe’ lemma now
tells us that the cohomology of Q, HQ, is the same as the cohomology of Q1

acting on the cohomology of Q2, i.e. HQ = HQ1
(HQ2

) ≡ H12, provided that
H12 has entries only in one row. That is, H12 is non-vanishing only for one
value of q (or f2).

...
...

...
↑ Q2 ↑ Q2 ↑ Q2

K0,2
Q1

−→ K1,2
Q1

−→ K2,2
Q1

−→ · · ·

↑ Q2 ↑ Q2 ↑ Q2

K0,1
Q1

−→ K1,1
Q1

−→ K2,1
Q1

−→ · · ·

↑ Q2 ↑ Q2 ↑ Q2

K0,0
Q1

−→ K1,0
Q1

−→ K2,0
Q1

−→ · · ·

4 Statement of main result

The main result of this paper can be formulated both in the physics and
mathematics context. We prove the result in the mathematics context,
namely we find the dimensions of the cohomology for the independence com-
plex on the square lattice wrapped around a torus. In the physics context
this translates to the statement that we found the total number of ground

FIG. 1. The diagram of the tic-tac-toe procedure[1].

The ’tic-tac-toe’ lemma says that the cohomology HQ

is equal to HQ1
(HQ2

) ≡ H12 if all nontrivial elements
in H12 have the same particle numbers on S2. If
the sufficient condition is not satisfied, further work is
required to connect H12 with HQ.

Let’s show the power of ’tic-tac-toe’ lemma in a 1d pe-
riodic chain with 9-sites. I choose sites 3, 6, 9 in S2 and

the rest of the sites in S1. To compute H12, we start with
finding HQ2

. Since each site in S2 is not adjacent to each
other, we can consider them independently. This is also
the reason why this setup is used. Take the site 3 as an
example. There are two possibilities, occupied or unoccu-
pied. If the site 3 is occupied, then this configuration |ψ1⟩
is exact |ψ1⟩ = Q2|ϕ⟩ and is excluded in HQ2

. If the site 3
is unoccupied with empty adjacent sites, this configura-
tion |ψ2⟩ would not be close since Q2|ψ2⟩ ̸= 0. The only
nontrivial possibility is that the site 3 is unoccupied due
to the filled adjacent site. Therefore, either site 2 or site
4 is filled. This result can be applied onto each site in S2

independently. Here, one might guess there would be to-
tal 23 = 8 configurations. However, we also need to make
the particles in S1 not adjacent to each other. If we start
from filled site 4, the sites 7 and 1 would also be the filled
sites. There are only two different configurations in HQ2 ,
|100100100⟩ and |010010010⟩. They are both close under
Q1 and not exact since there is no element |ϕ⟩ in HQ2

such that |100100100⟩ = Q1|ϕ⟩ or |010010010⟩ = Q1|ϕ⟩.
We can conclude there are two nontrivial cohomology
classes in H12 for 3 particles. The cohomology for all
the other particle numbers is trivial. Since the particle
number in S2 is the same for these two configurations,
there are also two nontrivial cohomology classes for HQ.
Similarly, this choice of S1, S2 can be used to compute
the cohomology class for all the open/periodic chain with
arbitrary lengthes. Their results are as follows:

The cohomology of Q on the periodic chain with L
sites has:

• 2 non-trivial cohomology classes with j fermions if
L = 3j

• 1 non-trivial cohomology classes with j fermions if
L = 3j + 1/3j − 1

The cohomology of Q on the open chain with L sites
has:

• 1 non-trivial cohomology classes with j fermions if
L = 3j/3j − 1

• 0 non-trivial cohomology classes with j fermions if
L = 3j + 1

V. A SIMPLE 2d EXAMPLE: MARTINI
LATTICE[4]

Even though the tic-tac-toe lemma can save us in the
previous 1d chain, one might wonder whether this sim-
plicity can be generalized into higher dimension. In this
section, I will introduce a simple 2d Martini lattice and
show that the construction of the nontrivial cohomology
classes is similar with 1d chain. Eventually, the num-
ber of the ground states is equal to the number of dimer
covering of the honeycomb lattices.

The Martini lattice is formed by replacing every other
site in a hexagonal lattice with a triangle. S1 is cho-
sen as the sites in the triangles. The rest of the sites
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are in S2. Note that each site in S2 is not adjacent to
each other again. Let’s construct the possible configu-
rations in HQ2

. Based on our previous experience, our
ultimate goal is to make every sites in S2 unoccupied
non-trivially. This turns out to make one of the adjacent
sites in S1 filled. One of the possible particle configura-
tions is shown in Fig. 2. Constructing the ground state
in the Martini lattice is easy but counting the total num-
ber is not simple. One way is to define a dimer for each
site in S1 and the orientation is determined by the cor-
responding filled site in S2. The number of the ground
states turns into the number of dimer covering of the
honeycomb lattices[5]. In fact, the entropy of the ground
state (S ≡ log(number of ground states)) increases lin-
early with the system size which suggests that the system
is ”super-frustrated”[4].

3

state with f = LΛ (the number of links in Λ), with a
possible exception when LΛ = NΛ − 1. When Λ is the
square lattice, the two ground states on Λ3 have filling
f = N/5 and f = 2N/5. Lattices of type Λ3 are the only
two-dimensional ones we know of where the number of
ground states does not grow with the size of the lattice.
Another exceptional case is the octagon-square lattice

in the first part of fig. 1. We take L rows and M columns
of squares (hence N = 4LM sites). Let S1 consist of
the leftmost site on every square. Then HQ2

is trivial
unless all the M sites on S1 in a given row either all are
occupied, or all are empty. There are 2L − 1 such con-
figurations which have at least one row in S1 occupied.
Because of the hard core, all the sites of S2 adjacent to an
occupied site on S1 cannot be filled, and the remaining
sites form independent open chains of length a multiple
of 3. Such an open chain has just one element of HQ2

,
so each of these 2L − 1 configurations correspond to one
element of HQ2

and H12. Now consider the configura-
tion where all sites on S1 are empty, so that the sites
on S2 form M periodic chains, each of length 3L. We
showed above that HQ2

for each of these chains has two
independent elements. Thus HQ2

and H12 are of dimen-
sion 2L+2M − 1. Applying the tic-tac-toe lemma to this
case is more involved, but the conclusion is that there are
2L + 2M − 1 ground states, each with N/4 fermions.

FIG. 1: Configurations obeying the 3-rule on the octagon-
square and nonagon-triangle lattices

We believe that on the octagon-square lattice, the
model exhibits a combination of Wigner-crystal order
with frustration. There are 2L+2M configurations ofN/4
particles which satisfy our heuristic 3-rule. 2L of them are
of the form displayed in fig. 1: one can shift all the parti-
cles in a given row without violating the rule. This illus-
trates how frustration arises: in each row one can shift all
the particles without violating the 3-rule. Likewise, 2M of
them have particles on the top or bottom of each square.
For mysterious reasons, the state with (kx, ky)=0 is not
a ground state, but we believe the remaining 2L+2M −1
ordered states dominate the actual ground states. In fur-
ther support of this claim, we analyze the discrete sym-
metries commuting with Q. If a given element of the
cohomology spontaneously breaks such a symmetry, the

corresponding ground state will break it too. The ground
states have spontaneously-broken parity symmetries like
the Wigner crystal states in fig. 1. Again like the crystal,
all but one of the 2L − 1 ground states first considered
spontaneously break translation symmetry in the vertical
direction but not the horizontal; 2M −2 of the remaining
ground states spontaneously break translation symme-
try in the horizontal direction. Moreover, the number
of ground states here can be changed by requiring that
just one site anywhere on the lattice be occupied. Con-
sider the octagon-square lattice with one site on S1 and
its three neighbors on S2 removed; this is equivalent to
demanding that there be a particle on this S1 site. On
this lattice there are just 2L−1 ground states. Only in an
ordered system should this type of change occur.
The Λ3 and octagon-square lattices are exceptional:

on all other lattices we have studied the ground-state
entropy is extensive. In many cases (including the tri-
angular, hexagonal and Kagomé lattices), this can be
seen by computing the Witten index W as a function of
the size of the lattice. Employing a row-to-row trans-
fer matrix TM , the index for M × L unit cells is ex-
pressed as WL,M = tr[(TM )L]. We found by exact di-
agonalization that the largest eigenvalues λmax

M of the
TM here behave as λmax

M ∝ λM , with |λ| > 1. Clearly,
the absolute value |λ| sets a lower bound on the ground-
state entropy per lattice site. For n sites per unit cell,
SGS/N ≥ ln |WL,M |/(nML) ∼ ln |λ|/n. For the triangu-
lar lattice, SGS/N ≥ 0.13. [7, 8]
For the nonagon-triangle lattice shown in the right half

of fig. 1, the extensive ground-state entropy can be ex-
actly computed. This lattice is formed by replacing every
other site on a hexagonal lattice with a triangle. To find
the ground states, take S1 to be the sites on the tri-
angles, and S2 to be the remaining sites. As with the
chain, HQ2

vanishes unless every site in S2 is adjacent to
an occupied site on some triangle. The non-trivial ele-
ments of HQ2

therefore must have precisely one particle
per triangle, each adjacent to a different site on S2. This
is because a triangle can have at most one particle on
it, and (with appropriate boundary conditions) there are
the same number of triangles as there are sites on S2.
A typical element of HQ2

is shown in fig. 1. One can
think of these as “dimer” configurations on the original
honeycomb lattice, where the dimer stretches from the
site replaced by the triangle to the adjacent non-triangle
site. Each close-packed hard-core dimer configuration is
in H12, and by the tic-tac-toe lemma, it corresponds to
a ground state. The number of such ground states eSGS

is therefore equal to the number of such dimer coverings
of the honeycomb lattice, which for large N is [6]

SGS

N
=

1

π

∫ π/3

0
dθ ln[2 cos(θ)] = 0.16153 . . . (7)

The frustration here clearly arises because there are many
ways of satisfying the 3-rule.

FIG. 2. One of the possible particle configurations of the
ground state in Martini lattice[4].

VI. 2d SQUARE LATTICE: TILTED
RECTANGLES[1]

After showing a special 2d example, I will get back
to the familiar 2d example, square lattice. Let’s focus
on a special example on the square lattice: tilted rect-
angle. The idea of defining the tilted rectangular is to
decompose a 2d plane in terms of a bunch of 1d chains.
The whole cohomology problem in the tilted rectangle
becomes the cohomology of many independent 1d chains.

The formal definition of the tilted rectangle R(M,N)
is as the points (x, y) which satisfy y ≤ x ≤ y +M − 1
and −y+1 ≤ x ≤ −y+N. The example of M = N = 6 is
shown in Fig. 3. The central enclosed green square is the
tilted rectangle. The orange points are in S1 The points
connected with blue curves are in S2. The points in S1

are now not adjacent to each other which means that we
can independently put the electrons on the sites in S1.
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FIG. 3. The tilted rectangle for M = N = 6.

Again, let’s start with computing HQ2
. Since the sites

in S2 are independent chains, we can check individual
chains separately. My starting point is the left-lower
blue curve. When the corresponding right-upper orange
points are filled, they will lead to 3 free and unoccupied
sites in the left-lower blue curve (red points). These free
and unoccupied sites would not be in HQ2

. Thus, all
these three orange points should be unoccupied. By per-
forming this analysis for each chain, we can conclude all
sites in S1 are unoccupied. Each chain in S2 now becomes
an independent open chain and the previous result of the
open chain can be directly used here. The length of each
open chain is M . The cohomology of the tilted rectangle
is

• 1 non-trivial cohomology classes with j fermions if
M = 3j/3j − 1

• 0 non-trivial cohomology classes with j fermions if
M = 3j + 1.

VII. 2D SQUARE LATTICE ON THE TORUS

The simplicity in the tiled rectangles relies on those
isolated sites in each chain. If we apply the periodic
boundary condition on the end points of the chain, the
cohomology can be still easily computed from the previ-
ous result of the periodic chain. However, if the square
lattice is doubly periodic, there are no such isolated sites
and the same trick can not be applied. For doubly pe-
riodic lattice, some sites in S1 would be also filled. The
detailed discussion of finding H12 = HQ1(HQ2) can be
found in[1]. The basic idea is to start from filling sites in
S1. Then, some sites in S2 become forbidden to be occu-
pied and those free sites would form open chain. The full
chain consists of many open segments. Since we know
the cohomology of the open segment with 3j + 1 sites
is trivial, this leads to a constraint for the particle con-
figurations in S1. These configurations would form HQ2

.
Finding H12 requires the discussion of the elements in
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HQ2
with different particle number in S2. Since the con-

figurations now have different particle number in S2, tic-
tac-toe lemma is not guaranteed to work. Therefore, the
last work is to construct HQ from the elements in H12.
Basically, we need to apply Q onto the element |ϕ⟩ in
H12, Q|ϕ⟩ = Q1|ϕ⟩. The operation of Q2 is guaranteed
since this element is chosen from HQ2 . However, the oper-
ation of Q1 is not necessarily to vanish since the subspace
is not limited in HQ2 . By expressing Q|ϕ⟩ = Q2|ψ⟩, we
can define a new state |ϕ1⟩ = |ϕ⟩ − |ψ⟩. If Q|ϕ1⟩ = 0,
the state |ϕ1⟩ is in the kernel of Q. However, if Q|ϕ1⟩
belongs to another element |ϕ̃⟩ in H12, neither of |ϕ⟩ nor
|ϕ̃⟩ are not in the kernel of HQ. With this procedure, we
can build the connection between HQ and H12.

VIII. SUMMARY

In this paper, we started from the definition of the
SUSY lattice fermion model and built the connection be-

tween the number of the ground state and the cohomol-
ogy. Furthermore, we utilize the tic-tac-toe lemma to
help solving the cohomology on different 1d and 2d lat-
tices. An interesting direction to explore in the future
would be whether the same method can be applied to
the spinful fermions.
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Appendix A: Cohomology calculation and the ground state in SUSY Lattice Fermion Model

For a periodic chain, one can have C0 = {000}, C1 = {100, 010, 001}, C2 = {0}. For clarity, let’s write down the
supercharge operators explicitly,

Q = c†1Pempty 2,3 + c†2Pempty 1,3 + c†3Pempty 1,2

Q† = c1Pempty 2,3 + c2Pempty 1,3 + c3Pempty 1,2.
(A1)

Let’s explicitly compute cohomology of Q on each n particle subspace Cn. For C0, the image of Q is {} since there is
no C−1. The kernel is also {} since Q|000⟩ ̸= 0. Thus, H(0)

Q = 0. For n = 1, the image of Q is |100⟩ + |010⟩ + |001⟩
which suggests the equivalence relation |001⟩ = −|100⟩ − |010⟩. The kernel of Q is {100, 010, 001} since Q|100⟩ =

Q|010⟩ = Q|001⟩ = 0. Thus, we have 2 nontrivial cohomology class H(1)
Q = {100, 010}. For n = 2,H(2)

Q = 0 since the
kernel and the image of Q are both zero.

For an open chain, one can have C0 = {000}, C1 = {100, 010, 001}, C2 = {101}, C3 = {0}. The supercharge
operators are a little bit different from the periodic chain.

Q = c†1Pempty 2 + c†2Pempty 1,3 + c†3Pempty 2

Q† = c1Pempty 2 + c2Pempty 1,3 + c3Pempty 2.
(A2)

Again, we can compute cohomology of Q on each n particle subspace Cn. For C0, the image of Q is {} since there is no
C−1. The kernel is also {} since Q|000⟩ ̸= 0. Thus, H(0)

Q = 0. For n = 1, the image of Q is |100⟩+ |010⟩+ |001⟩ which
suggests the equivalence relation |001⟩ = −|100⟩−|010⟩. The kernel ofQ is {100, 010} sinceQ(a|100⟩+b|010⟩+c|001⟩) =
(a+ c)|101⟩ ⇒ a = −c. Thus, the independent coefficients are a, b which suggests the independent basis is {100, 010}.
Thus, we only have 1 nontrivial cohomology class H(1). For n = 2, H(2)

Q = 0 since the kernel is zero.
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