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This note reviews some constructions and consequences of the anomaly polynomial for the lattice
symmetry and its interplay with other global symmetry. This is relevant to the understanding of
deconfined quantum criticality as the anomalous gapless boundary of certain symmetry protected
topological state.

INTRODUCTION

The anomaly polynomials are constructed by charac-
teristic classes which measure certain twist of the fields
over the base manifold. An intuitive picture for the
“twist” is the cylinder and Möbius,

they both have a circle in the middle, but at each point of
the circle, the arrow points to different directions, i.e. all
arrows point towards up for the cylinder and the arrows
rotate by π for the Möbius strip. These two may corre-
spond to the configurations of a non-linear sigma model
with both base manifold and target manifold being S1,

n : S1 → S1.

The Möbius strip cannot be continuously deformed to
the cylinder, but if the arrow rotates 2π, the configura-
tion can be continuously deformed to the cylinder, this
distinction is measured by H1(S1,Z2) = Z2. The base
circle and the arrow together (with arbitrary twist) form
the so-called “bundle”, the line bundles of a circle look
like the infinite cylinder or the infinite Möbius strip,

Lcyl : S1 × R π−→ S1

LMö : ([0, 2π]× R/ ∼)
π−→ S1, (0, t) ∼ (2π,−t),

in particular, the cylinder is the trivial line bundle while
the Möbius strip is a non-trivial line bundle and the
first Stiefel-Whitney class of the line bundles distinguish
them, w1(L) ∈ H1(S1,Z2).

In general, the first Stiefel-Whitney class measures
whether the bundle is orientable, namely whether all the
fibers can be coherently oriented, indeed, the Mö is un-
orientable while the cylinder is orientable. The second
Stiefel-Whitney class tells whether the spin structure can
be put on the manifold. For the real vector bundles (fiber
is Rn), one needs the Euler class as well as all its Stiefel-
Whitney and Pontryagin classes to tell whether the bun-
dle is trivial, but for complex vector bundles (fiber is Cn),
one only needs the Chern class.

The transition functions gij are GL(n,R) or GL(n,C)
for the real or complex vector bundles. The more physi-
cally relevant ones are the principle bundles with transi-
tion function in G.

The relation between the gauge connection in gauge the-
ory and the transition function of the G-bundle is,

Aj = g−1ij Aigij + g−1ij dgij . (0.1)

For the U(1) gauge theory,

gij = exp{(ifij)}, A→ A+ df (0.2)

which gives the familiar form of the U(1) gauge trans-
formation. One interesting question is that whether we
can lift the G-bundle to G̃-bundle with larger symmetry
group, the obstructions are measured by various charac-
teristic classes.

Back to physics, we would like to study whether a
gauge theory has the ’t Hooft anomaly of certain global
symmetry. The strategy is attempting to gauge that sym-
metry, and see whether the term is gauge invariant, if
not, it can be cured by a higher dimensional term, this is
called anomaly inflow. If the system has that anomaly,
the IR phase would be 1) spontaneously symmetry break-
ing 2) topological order 3) gapless.

Album-bundle and cowability An intuitive under-
standing of the previous mathematical discussion would
be: thinking of the bundle as an album, and the base
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manifold is the place you visited, the fibers are the pho-
tos you took at different positions. You would expect the
two photos do not change too much if the positions are
close to each other, and there is a transformation acting
on all the pixels of one photo to reproduce the other (e.g.
clouds move a little bit), that is the transition function.
We call it an album-bundle.

The album-bundle has a property: whether we can
photoshop a cow in the photo, i.e. the cowability. If
you have an album of photos took in the Doyle park,
that would be possible to ps a cow in the photos, but
UTC-bundle is non-cowable. We may use a Z2-valued
cow-class to measure the cowability.

The cow-class measures the obstruction to lift the tran-
sition function from, say clouds motion to the cow mo-
tion. The cow-class of the UTC-bundle is non-trivial,
thus the lifting is obstructed, while the Doyle bundle is
obstruction-free.

ANOMALY OF 1+1D SPIN- 1
2
CHAIN

The 1+1d spin- 12 chain has mixed anomaly between
the SO(3) spin rotation symmetry and the translation
symmetry. This was known by the Lieb-Schultz-Mattis
theorem [1], which states that an insulator with half-odd-
integer spin per unit cell cannot have a trivial gapped
ground state: in 1+1D the ground state must either
break the translational symmetry or be gapless, while
in higher dimensions the system may also spontaneously
break the SO(3)s spin rotation symmetry or support
topological order.

We would like to review a field theory description pre-
sented in Ref. [2], also see Ref. [3]. The gapless phase
of the spin- 12 chain can be described by the CP 1 model
with θ-term at θ = π,

L = |(∂µ − iaµ)zα|2 + iθ
f

2π
, θ = π, (0.3)

where zα with α = 1, 2 is a complex scalar transform-
ing in the projective S = 1/2 representation of spin-
rotation group SO(3)s. aµ is the dynamical gauge field
and f = da = εµν∂µaν . The Néel order parameter is
z†σiz, and the VBS order parameter is f = da. The lat-
tice translation symmetry will act internally on the field
contents,

Tx : z → iσyz?, a→ −a. (0.4)

Note that T 2zα = −zα = U(1)πzα, i.e. π-rotation in
the U(1) gauge group, and thus T 2

x acts trivially on the
physical operators, namely Tx is a Z2 symmetry.

To show there is a mixed ’t Hooft anomaly between the
two global symmetries, we are trying to gauge these sym-
meties. Since the translation symmetry Tx acts internally
as Zx2 , we can safely try to gauge this symmetry as well as
the SO(3)s spin rotation symmetry. As discussed in the
previous section, we are trying to also include the connec-
tion for the global symmetries in the transition function,
i.e. lift gij : Uij → U(1) to g̃ij : Uij → U(1) ∨ G1 ∨ G2,
where ∨ denotes certain combination of these groups.

Since T 2
x is the π-rotation of the U(1) group, when

gauging the translation Zx2 symmetry, the bosonic field
will see the transition function in Pin−(2) as reviewed in
the appendix.

Together with the spin rotation symmetry, the bosonic
field will see the transition function in,

G =
Pin−(2)× SU(2)

Z2
(0.5)

The Pin−(2) comes from the combination of the U(1)
gauge group and the Zx2 lattice translation symmetry
which we are trying to gauge, the SU(2)/Z2

∼= SO(3)
is the spin rotation symmetry.

However, when Zx2 is gauged the θ term is no longer
well-defined since it is odd under Zx2 , the resolution is to
think the theory is on the boundary of a 2+1d SPT bulk.
We need to extend the G-bundle into the 3d bulk and the
extension should not depend on the bulk we choose.

We first see when the G-bundle satisfies the cocycle
condition. The obstruction for lifting O(2) to the Pin−(2)
is measured by w2

1[g] + w2[g], for lifting SO(3) to SU(2)
is measured by w2[s]. And the g and s (g denotes the
gauge part, s denotes the spin part) combining together
is obstruction free, this means,

w2
1[g] + w2[g] = w2[s]. (0.6)

The Ref. [2] proposes the anomaly is captured by

iπ

∫
3

w3
1[g] + w1[g]w2[s] (0.7)

By the obstruction free condition, we have,

w3
1[g] + w1[g]w2[s] mod 2

=w1[g](w2[g]− w2[s]) + w1[g]w2[s] mod 2

=w1[g]w2[g] mod 2

=dw2[g]/2 mod 2

And when evaluating on a closed 3-manifold, the anomaly
vanishes, meaning that the extension is independent of
the bulk we chose.

We denote x ≡ w1[g] ∈ H1(M2,Z2) as an element
in first Stiefel Whitney class, this is also the Zx2 -gauge
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field. The first term in Eq. 0.7 is the Zx2 anomaly and
the second term is the mixed anomaly between Zx2 and
SO(3)s spin rotation symmetry.

[This part is probably not rigorous, I’m using a differ-
ent approch from the Ref. [2]] It remains to show that the
anomaly term reduces to the θ term when not gauging
the Zx2 and SO(3)s. The second term in Eq. 0.7 vanishes
automatically, the first term can be replaced with

w3
1[g] = w1[g]w2[g] mod 2 = w1[g]c1[g] mod 2, (0.8)

and imagine thread a flux for x in the virtual dimension,
this results in,

iπ

(∫
1

x

)
f

2π
= iπ

f

2π
. (0.9)

reproduces the θ term.
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APPENDIX

Pin+(2) and Pin−(2) [4]

We first introduce the basis, {ei}, they satisfy,

{ei, ej} = 2ηij1, ηij = 1r ⊕ (−1s). (0.10)

Then we define Pin±(d) according to whether e2i = +1
or e2i = −1.

Pin+(2) We define

O(α) = cos(α)e1 + sin(α)e2, (0.11)

E(α) = cos(α) + sin(α)e1e2 (0.12)

where e2i = +1, then Pin+(2) = {O(α)} ∪ {E(α)}, each
component is isomorphic to the circle. The group multi-
plication is,

E(α)E(β) = E(α+ β) O(α)E(β) = O(α+ β)

E(α)O(β) = O(α− β) O(α)O(β) = E(−α+ β)

and O(α)O(α) = +1.
Pin−(2) Similarly, we define

O(α) = cos(α)e1 + sin(α)e2, (0.13)

E(α) = cos(α) + sin(α)e1e2 (0.14)

where e2i = −1, then Pin−(2) = {O(α)} ∪ {E(α)}, each
component is isomorphic to the circle. The group multi-
plication is,

E(α)E(β) = E(α+ β) O(α)E(β) = O(α− β)

E(α)O(β) = O(α+ β) O(α)O(β) = E(α− β + π)

and O(α)O(α) = E(π).

Obstruction

Let G̃ be a simple simply-connected group. Fix a
closed spin four-manifold X. Consider a G-bundle on it
with G = G̃/Zk. The obstruction to lift the G-bundle to
G̃-bundle is measured by,

w2 ∈ H2(X,Zk) (0.15)

The Zk is the center of the group,

G An Bn Cn D2n D2n+1 E6 E7

Z Zn+1 Z2 Z2 Z2 × Z2 Z4 Z3 Z2
,

also [5],

Spin(n), n = 2d+ 1, Z2

Spin(n), n = 4d+ 2, Z4.

Given an unoriented d dimensional manifold, the obstruc-
tion for lifting to Pin±(d) is measured by [6]

w2(X), for Pin+(d),

w2(X) + w2
1(X), for Pin−(d),

If X is orientable, then w1(X) = 0, the two conditions
coincide and reduce to the condition that X admit a Spin
structure (w2).
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