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We discuss a connection between the gapped domain walls, symmetry-protected topological phases, and
fault-tolerant logical gates in topological color codes based on [Phys. Rev. B 91, 245131]. It was found
that applying a d-dim transversal operator leads to d − 1-dim excitations characterized by bosonic symmetry-
protected topological (SPT) wave functions, and these SPT-excitations can be realized as transparent gapped
domain walls in the color code. The connection may be generalized to a large class of topological quantum
codes and topological quantum field theories.

I. INTRODUCTION

Symmetry-protected topological (SPT) quantum phases are
described by short-range entangled states that cannot be
smoothly connected to trivial product states in the presence
of symmetries[1–3]. The study of SPT phases has enriched
quantum many-body physics in many aspects, yet their im-
plication in quantum information science is less explored. In
Ref.[4, 5], Yoshida explores an intriguing connection between
SPTphases and fault-tolerant logical gates in topological quan-
tum codes. Such a connection is notable since one may apply
the known classification of SPT phases to classify or construct
fault-tolerant logical gates, which is essential in topological
quantum computation. Furthermore, Yoshida also pointed
out that gapped boundaries and domain walls[6], another im-
portant subject in the study of topological order, can be con-
structed given the knowledge of fault-tolerant logical gates. As
such, a connection between SPT phases, fault-tolerant logical
gates, and gapped boundaries can be established.

In this report, we will provide a short review regarding the
aforementioned connection. We will mainly follow Ref.[4],
which focuses on d-dim topological color codes[7, 8], and
the generalization to the quantum double model discussed in
Ref.[5] will not be discussed here.

II. TOPOLOGICAL COLOR CODE

A two-dimensional color code can be defined on any three-
valent and three-colorable lattice, where each vertex accom-
modates a qubit. One common choice is the hexagonal lattice
with the Hamiltonian defined as

H = −
∑
P

S(X)P −
∑
P

S(Z)P . (1)

P labels a plaquette, and S(X)P , S(Z)P are products of Pauli-X, Z
operators acting on all qubits on the plaquette P (see Fig.1).
This is a stabilizer Hamiltonian since every term commutes
with each other, and correspondingly, a ground state |ψ〉 sat-
isfies S(X)P |ψ〉 = S(Z)P |ψ〉 = |ψ〉. Being a topological code, H
supports anyonic excitations, which live on two ends of string
operators. To construct these excitations, we now assign col-
ors A, B, and C such that two plaquettes that share an edge
have different colors. It follows that an edge can also have the

FIG. 1: Left: local terms S(Z)P and S(X)P in the color code
Hamiltonian (Eq.1). Right: a string operator γAB creates a
pair of excitations on its two ends (the shaded plaquettes).

color AB, BC, or CA that is determined by its two neighbor-
ing plaquettes. For a set of edges of color AB which form a
one-dimensional line γAB (see Fig.1), one can define

XAB |γAB =
∏

j∈γAB

Xj, ZAB |γAB =
∏

j∈γAB

Z j, (2)

and it is not hard to see that such string operators commute
with all the terms in H, except for the two plaquette terms
on their boundary. Correspondingly, applying XAB |γAB and
ZAB |γAB on a ground state |ψ〉 creates the magnetic fluxes mC

and electric charges eC respectively, which can be expressed
as

XAB |γAB → mC, ZAB |γAB → eC . (3)

Similarly, one can construct other types of string opera-
tors that create anyons: XBC |γBC → mA, ZBC |γBC → eA,
XCA |γCA → mB, and ZCA |γCA → eB. Importantly, the
excitations are not independent from each other since ap-
plying a single Pauli-X/Z creates the composite excitations
mAmBmC/eAeBeC , implying the existence of the fusion chan-
nel mA × mB × mC = 1 and eA × eB × eC = 1. In addition
to the string operators, there also exist membrane-like opera-
tors as follows. Considering the Hadamard operatorH , which
exchanges a Pauli-X and a Pauli-Z, i.e. HXH† = Z and
HZH† = X , one can define the membrane operator

H =
∏
j

Hj, (4)
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which commutes with H but has the non-trivial operation for
exchanging magnetic fluxes and electric charges. To construct
another non-trivial membrane operator, one first divides the
(bipartite) hexagonal lattice into two sublattices T and Tc so
that the nearest neighbors of every site in T belong to Tc and
vice versa, and then a membrane operator R can be defined as

R =
∏
j∈T

Rj

∏
i∈T c

(
Rj

)−1
, (5)

where R =
√

Z = diag(1, i) is a phase gate which exchanges
Pauli-X and Y as RXR† = Y and RY R† = −X . Crucially,
although R does not commute with the Hamiltonian H, it
commutes with the projector to the ground state subspace of
H, and can implement the nontrivial operation on anyons:

eA→ eA, eB → eB,mA→ mAeA,mB → mBeB . (6)

Having introduced the basics of the color code Hamiltonian,
we now discuss how SPT orders naturally arise in the applica-
tion of membrane operators.

III. SPT ORDER FROM FAULT-TOLERANT LOGICAL
GATES

Here we will show that restricting a membrane operator in
a subregion V induces a loop-like excitation (on its boundary
∂V) characterized by a non-trivial SPT order. First, let’s con-
sider the flux-free subspace Hno− f lux where |ψ〉 ∈ Hno− f lux

satisfies S(Z)P |ψ〉 = |ψ〉. One can define an excitation basis to
encode the location of excitations in S(X)P :

S(X)Pj

��p̃1, · · · , p̃n0

〉
= (1 − 2pj)

��p̃1, · · · , p̃n0

〉
, (7)

where p̃j can be 0 or 1, corresponding to the absence or pres-
ence of the excitation on the plaquette p̃j , and n0 denotes the
total number of plaquettes on the lattice. Since a ground state��ψgs

〉
is invariant under the application of the membrane op-

erators R, restricting R on a subregion V creates a loop-like
excitation on the boundary of V (see Fig.2), and the corre-
sponding wave function |ψV 〉 = R|V

��ψgs

〉
can be conveniently

expressed in the excitation basis as

|ψV 〉 → |ψ∂V 〉 ⊗
��0̃, · · · , 0̃〉 , (8)

where |ψ∂V 〉 denotes the boundary excitations on the plaque-
ttes A1, B1, · · · An, Bn:

|ψ∂V 〉 =
∑

p̃A1, p̃B1, · · ·p̃An , p̃Bn

λ({p̃j})
��p̃A1, p̃B1, · · · p̃An, p̃Bn

〉
(9)

and
��0̃, · · · , 0̃〉 denotes the rest (un-excited) plaquettes. No-

tably, the state |ψ∂V 〉 is the exact ground state wave function
of a 1d cluster state Hamiltonian, which exhibits a non-trivial
Z2 × Z2 SPT order. While it is not hard to see that the Z2 × Z2
symmetry arises simply from the number parity conservation
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FIG. 1

FIG. 2: A loop-like excitation with the Z2 × Z2 SPT
order (Eq.9) supported on the boundary of a mem-
brane operator. The phase gate operators R(R−1)
are applied on filled circles (filled double circles).

of the electric charges eA and eB: NA = NB = 0 mod 2, it
remains non-trivial that the boundary excitation corresponds
to an SPT phase. The central idea is that the preparation of the
boundary loop excitation cannot be obtained by just applying
a local unitary transformation localized on the boundary. To
see this, one can imagine transporting a magnetic flux m from
the region outside of V to inside of V . Based on Eq.6, the m
flux will be transformed into a pair of e charge and m flux, and
this implies one must apply a unitary operation on all qubits in
V to realize the boundary excitation, hence giving rise to the
non-trivial SPT order. In particular, the application of the R
phase gate is essentially a symmetry-protected quantum circuit
for preparing the SPT wave functions.

IV. GAPPED DOMAIN WALLS FROM FAULT-TOLERANT
LOGICAL GATES

We have seen that applying a membrane operator restricted
in a subregion V for a ground state creates fluctuating charges
with a non-trivial SPT order on the boundary of V . Now we
show that applying such operators to transform Hamiltonian
allows to create gapped domain walls, which establishes a
connection between the classification of gapped domain walls
and fault-tolerant logical gates.
To start, one can split the lattice into the left part and the right

part, and perform a transformation on the color code Hamil-
tonian using the Hadamard gates restricted in the right of the
lattice (i.e. H|R =

∏
j∈RHj). It follows that the transformed

Hamiltonian H̃ = H|RH(H |R)† reads H̃ = HL + HR + HLR,
where H̃ differ from H only in the terms localized on the
boundary between L and R. Crucially, sinceH|R implements a
unitary transformation, H̃ remains gapped, and HLR can be re-
garded as a gapped domainwall, acrosswhich anyons exchange
m-fluxes and e-charges: (eA |mA), (mA |eA), (eB |mB), (mB |eB).
Note that such a domain wall is transparent in the sense that
a single anyon cannot condense on the domain wall. One can
follow a similar strategy to construct another gapped domain
wall using the phase gate R, which induces the following anyon
exchange rule (mA |eAmA), (eA |eA), (mB |eBmB), (eB,mB) (see
Fig.3). More broadly, one can show that the membrane opera-
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FIG. 3: A transparent gapped domain wall obtained
by restricting the membrane operator R in the right.

tors associated with non-trivial automorphisms among anyon
labels always lead to transparent gapped domain walls in (2 +
1)-dimensional TQFTs.

V. SUMMARY AND DISCUSSION

We have presented a short review regarding the connec-
tion between SPT phases, gapped domain walls, fault-tolerant

logical gates in the two-dimensional topological color code.
Such an observation in fact can be generalized to the d-
dim color code[4]. In particular, applying Rd phase gates
(Rd = diag(1, exp

(
iπ/2d−1))) on all qubits in a connected

subregion V creates d − 1 dim excitations characterized by a
bosonic SPT order with (Z2)

⊗d symmetry, and this SPT order
in turn characterizes the gapped domain walls in the d-dim
color codes.

Finally, we note that the aforementioned connection has
been generalized to d-dim quantum double models[5], where
it was found that using d-cocycle functions, one can construct
the gapped boundaries/domain walls, fault-tolerantly imple-
mentable logical gates, and excitations characterized by an
SPT order.

Yoshida’sworks[4, 5] havemotivated some interesting ques-
tions. A natural future direction is generalizing the discussion
of global on-site symmetries of SPT orders to q-form symme-
tries, where symmetry operators are codimension-1 objects,
and exploring the implication to gapped boundaries and fault-
tolerant logical gates. Similarly, one may employ SPT orders
with fractal-like symmetries to explore novel types of gapped
boundaries and logical gates.
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