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We discuss a connection between the gapped domain walls, symmetry-protected topological phases, and
fault-tolerant logical gates in topological color codes based on [Phys. Rev. B 91, 245131]. It was found
that applying a d-dim transversal operator leads to d — 1-dim excitations characterized by bosonic symmetry-
protected topological (SPT) wave functions, and these SPT-excitations can be realized as transparent gapped
domain walls in the color code. The connection may be generalized to a large class of topological quantum

codes and topological quantum field theories.

I. INTRODUCTION

Symmetry-protected topological (SPT) quantum phases are
described by short-range entangled states that cannot be
smoothly connected to trivial product states in the presence
of symmetries[1-3]. The study of SPT phases has enriched
quantum many-body physics in many aspects, yet their im-
plication in quantum information science is less explored. In
Ref.[4, 5], Yoshida explores an intriguing connection between
SPT phases and fault-tolerant logical gates in topological quan-
tum codes. Such a connection is notable since one may apply
the known classification of SPT phases to classify or construct
fault-tolerant logical gates, which is essential in topological
quantum computation. Furthermore, Yoshida also pointed
out that gapped boundaries and domain walls[6], another im-
portant subject in the study of topological order, can be con-
structed given the knowledge of fault-tolerant logical gates. As
such, a connection between SPT phases, fault-tolerant logical
gates, and gapped boundaries can be established.

In this report, we will provide a short review regarding the
aforementioned connection. We will mainly follow Ref.[4],
which focuses on d-dim topological color codes[7, 8], and
the generalization to the quantum double model discussed in
Ref.[5] will not be discussed here.

II. TOPOLOGICAL COLOR CODE

A two-dimensional color code can be defined on any three-
valent and three-colorable lattice, where each vertex accom-
modates a qubit. One common choice is the hexagonal lattice
with the Hamiltonian defined as
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P labels a plaquette, and SEDX), S;Z) are products of Pauli-X, Z

operators acting on all qubits on the plaquette P (see Fig.1).
This is a stabilizer Hamiltonian since every term commutes
with each other, and correspondingly, a ground state |i) sat-
isfies SEDX) ) = S;,Z) [¥) = |¥). Being a topological code, H
supports anyonic excitations, which live on two ends of string
operators. To construct these excitations, we now assign col-
ors A, B, and C such that two plaquettes that share an edge
have different colors. It follows that an edge can also have the

FIG. 1: Left: local terms SE,Z) and SI(DX) in the color code

Hamiltonian (Eq.1). Right: a string operator Y42 creates a
pair of excitations on its two ends (the shaded plaquettes).

color AB, BC, or CA that is determined by its two neighbor-
ing plaquettes. For a set of edges of color AB which form a
one-dimensional line yAB (see Fig.1), one can define
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and it is not hard to see that such string operators commute
with all the terms in H, except for the two plaquette terms
on their boundary. Correspondingly, applying X48| 45 and

ZAB a5 on a ground state |y} creates the magnetic fluxes mc
and electric charges ec respectively, which can be expressed
as

XAB |,)/AB — mc, ZAB |7AB — éc. (3)

Similarly, one can construct other types of string opera-

tors that create anyons: XBclyBC — ma, ZBclyBC — ey,

XCAlyCA — mp, and ZCA|7CA — ep. Importantly, the
excitations are not independent from each other since ap-
plying a single Pauli-X/Z creates the composite excitations
mampmc [eaepec, implying the existence of the fusion chan-
nel mgy X mp Xmec = 1 and eg X eg X ec = 1. In addition
to the string operators, there also exist membrane-like opera-
tors as follows. Considering the Hadamard operator #, which
exchanges a Pauli-X and a Pauli-Z, i.e. HXH' = Z and
HZHT = X, one can define the membrane operator
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which commutes with H but has the non-trivial operation for
exchanging magnetic fluxes and electric charges. To construct
another non-trivial membrane operator, one first divides the
(bipartite) hexagonal lattice into two sublattices 7" and T¢ so
that the nearest neighbors of every site in 7 belong to 7 and
vice versa, and then a membrane operator R can be defined as

R=[[”[]®)™" (5)
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where R = VZ = diag(1,i) is a phase gate which exchanges
Pauli-X and Y as RXR" = Y and RYR' = —X. Crucially,
although R does not commute with the Hamiltonian H, it
commutes with the projector to the ground state subspace of
H, and can implement the nontrivial operation on anyons:

eq — epep — ep,mpg — maea,mg — mpeg.  (6)

Having introduced the basics of the color code Hamiltonian,
we now discuss how SPT orders naturally arise in the applica-
tion of membrane operators.

III. SPT ORDER FROM FAULT-TOLERANT LOGICAL
GATES

Here we will show that restricting a membrane operator in
a subregion V induces a loop-like excitation (on its boundary
0V) characterized by a non-trivial SPT order. First, let’s con-
sider the flux-free subspace Hyo—fiux Where ) € Hyoofrux

satisfies S;Z) [¢) = |). One can define an excitation basis to

encode the location of excitations in SJ(DX):
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where p; can be 0 or 1, corresponding to the absence or pres-
ence of the excitation on the plaquette j;, and ny denotes the
total number of plaquettes on the lattice. Since a ground state

|l,0gs> is invariant under the application of the membrane op-

erators R, restricting R on a subregion V creates a loop-like
excitation on the boundary of V (see Fig.2), and the corre-
sponding wave function [y') = Ry |l,[/gs> can be conveniently
expressed in the excitation basis as

|¢V> - |¢5V) ® |6» e 76>a (8)

where |5y ) denotes the boundary excitations on the plaque-
ttes Ay, By, - -+ Ay, Byt
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and |0, --,0) denotes the rest (un-excited) plaquettes. No-
tably, the state |¢gy ) is the exact ground state wave function
of a 1d cluster state Hamiltonian, which exhibits a non-trivial
Z» X Z» SPT order. While it is not hard to see that the Z, X Z,
symmetry arises simply from the number parity conservation

FIG. 2: A loop-like excitation with the Z, x Z, SPT
order (Eq.9) supported on the boundary of a mem-
brane operator. The phase gate operators R(R™')
are applied on filled circles (filled double circles).

of the electric charges e4 and eg: Ny = Np = 0 mod 2, it
remains non-trivial that the boundary excitation corresponds
to an SPT phase. The central idea is that the preparation of the
boundary loop excitation cannot be obtained by just applying
a local unitary transformation localized on the boundary. To
see this, one can imagine transporting a magnetic flux m from
the region outside of V to inside of V. Based on Eq.6, the m
flux will be transformed into a pair of e charge and m flux, and
this implies one must apply a unitary operation on all qubits in
V to realize the boundary excitation, hence giving rise to the
non-trivial SPT order. In particular, the application of the R
phase gate is essentially a symmetry-protected quantum circuit
for preparing the SPT wave functions.

IV.  GAPPED DOMAIN WALLS FROM FAULT-TOLERANT
LOGICAL GATES

We have seen that applying a membrane operator restricted
in a subregion V for a ground state creates fluctuating charges
with a non-trivial SPT order on the boundary of V. Now we
show that applying such operators to transform Hamiltonian
allows to create gapped domain walls, which establishes a
connection between the classification of gapped domain walls
and fault-tolerant logical gates.

To start, one can split the lattice into the left part and the right
part, and perform a transformation on the color code Hamil-
tonian using the Hadamard gates restricted in the right of the
lattice (i.e. H|g = [1jeg H;). It follows that the transformed
Hamiltonian H = 7_-(|RH(ﬂ|R)Jr reads H = H; + Hg + HR,
where H differ from H only in the terms localized on the
boundary between L and R. Crucially, since ﬁ| R implements a
unitary transformation, A remains gapped, and Hy g can be re-
garded as a gapped domain wall, across which anyons exchange
m-fluxes and e-charges: (ea|ma), (malea), (eglmp), (mglep).
Note that such a domain wall is transparent in the sense that
a single anyon cannot condense on the domain wall. One can
follow a similar strategy to construct another gapped domain
wall using the phase gate R, which induces the following anyon
exchange rule (maleama), (ealea), (mplegmp), (e, mp) (see
Fig.3). More broadly, one can show that the membrane opera-
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FIG. 3: A transparent gapped domain wall obtained
by restricting the membrane operator R in the right.

tors associated with non-trivial automorphisms among anyon
labels always lead to transparent gapped domain walls in (2 +
1)-dimensional TQFTs.

V. SUMMARY AND DISCUSSION

We have presented a short review regarding the connec-
tion between SPT phases, gapped domain walls, fault-tolerant

logical gates in the two-dimensional topological color code.
Such an observation in fact can be generalized to the d-
dim color code[4]. In particular, applying R; phase gates
(Ry = diag(1,exp(in/297'))) on all qubits in a connected
subregion V creates d — 1 dim excitations characterized by a
bosonic SPT order with (Z;)®¢ symmetry, and this SPT order
in turn characterizes the gapped domain walls in the d-dim
color codes.

Finally, we note that the aforementioned connection has
been generalized to d-dim quantum double models[5], where
it was found that using d-cocycle functions, one can construct
the gapped boundaries/domain walls, fault-tolerantly imple-
mentable logical gates, and excitations characterized by an
SPT order.

Yoshida’s works[4, 5] have motivated some interesting ques-
tions. A natural future direction is generalizing the discussion
of global on-site symmetries of SPT orders to g-form symme-
tries, where symmetry operators are codimension-1 objects,
and exploring the implication to gapped boundaries and fault-
tolerant logical gates. Similarly, one may employ SPT orders
with fractal-like symmetries to explore novel types of gapped
boundaries and logical gates.
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