How to (in principle) measure topological data?
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INTRODUCTION

The topological order of a 3D system is fully charac-
terized by a unitary modular tensor category (UMTC)
which specifies the fusion and braiding properties of the
system. The basic data defining a UMTC are the R-
symbols and F-symbols. The modular data defining a
UMTC are the S and T matrices. The S-matrix is the
invariant associated with a single figure-8 stand and T-
matrix is a invariant if the strands of the figure-8 are
colored by two objects. The modular data contains the
rank, fusion rules (from Verlinde), dimensions of the ir-
reps, central charge etc. Unfortunately the modular data
is incomplete.[1] This (very) short paper mentions some
experiments to probe UMTC.[2]

EXPERIMENTS

As an (in principal) experimenter we shall assume that
we can (in principal) do certain things to anyons. Some
of those things are: 1) we can localize the anyon - this
is done by introducing a pinning potential at some site,
measure the charge of the anyon, move around anyons in
the bulk - this can be done by (non-local) quantum tele-
portation or moving the position of the pinning potential
and split anyons - this is done by adiabatically changing
the pinning potential or interferometry.

Fusion rules and Quantum Dimensions

The simplest thing to do is to just measure the collec-
tive charge of a pair of anyons, that is given the vacuum
state 0, we first create a pair of a, @ and b, b move the pair
apart and then measure the outcome of the experiment
to find the probability that a and b fuse to ¢. This is
given by
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where Hﬁ“b) is defined by,
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and dg, dy, d. are the quantum dimensions of charges
a, b, c. Repeating this experiment many times for all pos-
sible values of a, b will help us infer the fusion coefficients
and quantum dimensions.

Associativity

In this experiment we calculate the F-symbols which
are defined by,
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where the greek symbols are the dimensions of the fu-
sion spaces. The experiment is done in two steps, first
we we do an initial setup as follows: create charges d,d
and pull them apart, now split d into charges e,c and
pull them apart, and finally split and separate e into a, b.
Now, the second setup involves doing a series of measure-
ments: measure the charge of b — ¢, measure the charge
charge of @ — b and now go back to the first step. The
probability that a — b has charge f given a —b had charge
e is
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The first step can be diagramatically represented as



which is equivalent to
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Repeating this experiment many times for different val-
ues of a, b, c and d will give magnitudes of all F-symbols.
The phase information may be found via consistency re-
lations like pentagon equation.

Braiding

The braiding experiment is carried out by create-
separating charges (a,a) (b,b), braiding them around
each other and measuring the charge of @ — a. The prob-

ability that the pair a — a has a charge z is given by,
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where the R-symbol is defined by
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and St(li) is the punctured torus S-matrix
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The above formulae can be checked using the diagram
below,

Last experiment

In 3D a TQFT can be defined in terms of the corre-
sponding UMTC. On a nontrivial surface the TQFT tells
us something about the invariants associated with topo-
logical operations on the state space given by the map-
ping class group which is defined as the isotopy equiv-
alence classes of orientation preserving diffeomorphisms
of the surface. On a torus, a canonical ground state can
be defined in terms of charge a (flux threading the cycle)
and an ordered pair (I, m) of generating cycles on the sur-
face, denoted by |¢0>(17m). The mapping class group of



the torus 2 SL(2,Z), relates any two choices (I, m) and
(I’,m’) of generating pairs of cycles of the torus as
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is be generated by the two elements
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which satisfy group relations (5t)? = s? and s* = 1. For

a general modular transformation g the projective repre-
sentation of its action is given by

|q)a>(l,m) = ZQab |(I)b>(l’,m’)
b

where () can be expressed in terms of the S and T matri-
ces in the same manner that ¢ is generated from s. The
experiment to measure @ is carried out by first measuring
the charge around the cycle m and m’. The probability
that the measurement around the cycle m’ will have out-
come b, given that measurement around the cycle m had

value a is
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Question: Is it possible to distinguish the categories in
Mignard and Schaenberg paper by considering mapping
class groups on a punctured torus?

[1] It was thought that the modular data is all the invariants
of a modular tensor category until 2017 when Mignard
and Schauenberg found that modular categories Z(Vecs)
for G = Z/q x Z/p, where p,q are primes and p|g — 1
cannot be explicitly determined from the modular data.
Bonderson et. al. showed that the W —matrix related to
the whitehead link (and to the punctured S-matrix) and
T-matrices distinguished the modular tensor categories in
the counter example.
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