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INTRODUCTION

The topological order of a 3D system is fully charac-
terized by a unitary modular tensor category (UMTC)
which specifies the fusion and braiding properties of the
system. The basic data defining a UMTC are the R-
symbols and F -symbols. The modular data defining a
UMTC are the S and T matrices. The S-matrix is the
invariant associated with a single figure-8 stand and T-
matrix is a invariant if the strands of the figure-8 are
colored by two objects. The modular data contains the
rank, fusion rules (from Verlinde), dimensions of the ir-
reps, central charge etc. Unfortunately the modular data
is incomplete.[1] This (very) short paper mentions some
experiments to probe UMTC.[2]

EXPERIMENTS

As an (in principal) experimenter we shall assume that
we can (in principal) do certain things to anyons. Some
of those things are: 1) we can localize the anyon - this
is done by introducing a pinning potential at some site,
measure the charge of the anyon, move around anyons in
the bulk - this can be done by (non-local) quantum tele-
portation or moving the position of the pinning potential
and split anyons - this is done by adiabatically changing
the pinning potential or interferometry.

Fusion rules and Quantum Dimensions

The simplest thing to do is to just measure the collec-
tive charge of a pair of anyons, that is given the vacuum
state 0, we first create a pair of a, ā and b, b̄ move the pair
apart and then measure the outcome of the experiment
to find the probability that a and b fuse to c. This is
given by
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where Π
(ab)
c is defined by,

and da, db, dc are the quantum dimensions of charges
a, b, c. Repeating this experiment many times for all pos-
sible values of a, b will help us infer the fusion coefficients
and quantum dimensions.

Associativity

In this experiment we calculate the F-symbols which
are defined by,

where the greek symbols are the dimensions of the fu-
sion spaces. The experiment is done in two steps, first
we we do an initial setup as follows: create charges d, d̄
and pull them apart, now split d into charges e, c and
pull them apart, and finally split and separate e into a, b.
Now, the second setup involves doing a series of measure-
ments: measure the charge of b − c, measure the charge
charge of a − b and now go back to the first step. The
probability that a−b has charge f given a−b had charge
e is
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The first step can be diagramatically represented as



2

which is equivalent to

where the ω loops are defined as

Repeating this experiment many times for different val-
ues of a, b, c and d will give magnitudes of all F -symbols.
The phase information may be found via consistency re-
lations like pentagon equation.

Braiding

The braiding experiment is carried out by create-
separating charges (a, ā) (b, b̄), braiding them around
each other and measuring the charge of ā− a. The prob-

ability that the pair ā− a has a charge z is given by,
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where the R-symbol is defined by

and S
(z)
ab is the punctured torus S-matrix

The above formulae can be checked using the diagram
below,

Last experiment

In 3D a TQFT can be defined in terms of the corre-
sponding UMTC. On a nontrivial surface the TQFT tells
us something about the invariants associated with topo-
logical operations on the state space given by the map-
ping class group which is defined as the isotopy equiv-
alence classes of orientation preserving diffeomorphisms
of the surface. On a torus, a canonical ground state can
be defined in terms of charge a (flux threading the cycle)
and an ordered pair (l,m) of generating cycles on the sur-
face, denoted by |Φ0⟩(l,m). The mapping class group of
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the torus ∼= SL(2,Z), relates any two choices (l,m) and
(l′,m′) of generating pairs of cycles of the torus as

(l,m) = q (l′,m′) = (αl′ + βm′, γl′ + δm′)

where α, β, γ, δ ∈ Z and αδ − βγ = 1.

q ∼=
[
α β
γ δ

]
is be generated by the two elements

s ∼=
[
0 −1
1 0

]
, t ∼=

[
1 1
0 1

]
which satisfy group relations (5t)2 = s2 and s4 = 1. For
a general modular transformation q the projective repre-
sentation of its action is given by

|Φa⟩(l,m) =
∑
b

Qab |Φb⟩(l′,m′)

where Q can be expressed in terms of the S and T matri-
ces in the same manner that q is generated from s. The
experiment to measure Q is carried out by first measuring
the charge around the cycle m and m′. The probability
that the measurement around the cycle m′ will have out-
come b, given that measurement around the cycle m had

value a is

pq(b | a) = |Qab|2

Question: Is it possible to distinguish the categories in
Mignard and Schaenberg paper by considering mapping
class groups on a punctured torus?

[1] It was thought that the modular data is all the invariants
of a modular tensor category until 2017 when Mignard
and Schauenberg found that modular categories Z(V ecωG)
for G = Z/q ⋊ Z/p, where p, q are primes and p|q − 1
cannot be explicitly determined from the modular data.
Bonderson et. al. showed that the W−matrix related to
the whitehead link (and to the punctured S-matrix) and
T-matrices distinguished the modular tensor categories in
the counter example.

[2] Parsa Bonderson, ”Measuring Topological Order,”
arxiv:2102.05677 1
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