
Notes on TQFT from M-theory

In this short note, we briefly describe how to acquire TQFT from compactifying M5 branes over
3-manifoldM following [1].
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1. Overview

In this short note, we want to explain briefly how one can acquire TQFT from compactifying M5

branes over 3-dimensional manifoldsM in M-theory.
The setup is canonical, we choose the 11-dim space time to by R1,2 × (T ∗M)× R2 and place

the two coincident M5 branes on R1,2 ×M. And we will denote the resulting 3d theory as T [M].
We will divide the sections into two parts. First, notice that compactifying higher dimensional

theories in general does not give theories which are IR gapped, let alone TQFT. Therefore, it is
important to determine which compact manifoldsM would lead to TQFT. We will explain this
in the first part. Second, once we know we get a TQFT after compactification, we wish to figure
out a way to extract data from the geometry ofM. We will discuss this in the second part.

The discussions require some background on various stuffs, which we will introduce as we
run into it. However, we will omit many subtleties1 and readers who are interested can read the
original article [1] or discuss me with email. Also, I am not using the provided tex template as I
found many people did not use it in the last quarter. The author also thanks John McGreevy for
pointing out this paper to me half a year ago.

2. When do we expect TQFT?

To answer this question when we can get TQFT, we start our story with an important observable
in the supersymmetric theory, the supersymmetric index, counting only the protected operators.
Those indices are invariant under the renormalization group flow, therefore are useful tools to
probe the IR theory. Usually, those states counted by the index are counted by supersymmetry
or by topology. In 3d, the super conformal index Isci is defined as

Isci(x) = TrH(S2)(−1)Rx
R
2
+j3

where R ∈ Z is the charge under UV U(1)R symmetry, j3 ∈ Z/2 is the charge of SO(3) isometry
of S2, x = e−β where β is the perimeter of Euclidean time circle S1. This index counts the BPS
local operators preserving 2 supercharges.

There is another index, the topologically twisted refined index Itop, counting the supersym-
metric ground states on a topologically twisted S2 with unit background magnetic flux of the
U(1)R symmetry:

Itop(x) = TrH(S2)(−1)Rxj3 .

The above two indices can be expressed in terms of Bethe vacua. To give a brief review of the
Bethe vacua [2], let’s start with 2d gauge theories with N = (2, 2) supersymmetry. We focus on
the Coulomb branch of the theory, and deform the theories by adding twisted mass m, which
amounts to couple the matter fields to a background vector multiplet with only the bottom scalar
being non-zero and constant. Notice that we can use gauge symmetry to rotate m into the Cartan

1For instance, we will not discuss the condition such that T [M] is a unitary TQFT.
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of the gauge group. For generic m, all matter fields would become massive, thus can be integrated
out. The resulting contribution is an F-term and is 1-loop exact. On the Coulomb branch, the
massive modes in the gauge multiplet would also contribute. Combine the two results we get the
effective twisted superpotential W̃(σ). The Bethe vacua are defined as the local minimum α of
the twisted superpotential 2

exp

(
∂W̃
∂σi

)
= 1.

In 3d, if we compactify the theory over S1, each multiplet leads to an infinite tower of KK
modes. We can integrate over the contributions from these massive KK modes; this leads to
definition of effective twisted superpotential and the Bethe vacua for 3d theory.

Then, the two indices can be expressed as

Isci(x) =
∑

α:Bethe-vacua

Bα(x)Bα(x−1)∗,

Itop(x) =
∑

α:Bethe-vacua

Bα(x)Bα(x−1),

where B(x) is the holomorphic block, computing the partition function on R2 × S1 with an
asymptotic boundary condition determined by the choice of a Bethe-vacuum α.

The key observation in [1] is that Isci(x) = Itop(x) hints the theory would flows to a topological
theory in the IR. This is quite natural, since Isci(x) = Itop(x) suggests there are no SUSY protected
states except the ones are also protected by topology.
Isci(x) = Itop(x) translates into Bα(x) = Bα(x)∗ for all α; and the fact that the theory

is acquired from compactifying M5 branes over 3-manifoldM allows us to further relates the
above condition to the geometric property ofM. For this, we will use the 3d-3d correspondence
between 3d theory T (M) and 3d SL(2,C) CS theory onM3. In particular, there is a one-to-
one correspondence between Bethe vacua of T (M) and the irreducible flat connection Aα. By
irreducible, we mean their holonomy matrices are not all mutually commuting.

It is claimed in [1] ifM satisfies

• i) there are (non-empty) finitely many irreducible SL(2,C) flat connections onM;

• ii) all of them are gauge equivalent to either SU(2) or SL(2,R) flat connection;

then Bα(x) = Bα(x)∗ =⇒ Isci(x) = Itop(x).
To see this, we must use another relation in the 3d-3d dictionary relates the partition function

of SL(2,C) and the holomorphic blocks of T (M), the asymptotic expansion ZαCS pert. as ~→ 0 is
equal to the perturbative expansion of homolorphic block Bα(q) over S2 ×q S1 (the S2 is fibered
over S1 with holonomy log q) in the limit q → 1:

ZαCS pert.(~) ' Bα(q := e~).

2We do not write ∂W̃
∂σi = 0, because W̃ are defined up to unphysical shift W̃ → W̃ − 2πi

∑rankG
i=1 niσ

i, ni ∈ Z.
3If we have N M5 branes instead, the 3d theory would be SL(N,C) CS theory.
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The expansion ZαCS pert. is given by

ZαCS pert. :=

∫
DδA

(gauge)
e−

1
2~CS[A

α+δA;M] → exp

(
1

~
Sα0 + Sα1 + · · ·+ ~nSαn+1 · · ·

)
(2.1)

where for instance
Sα0 = −1

2
CS[Aα,M]

For a SL(2,R) or SU(2) flat connection Aα, its complex conjugation (Aα)∗ satisfies

(Aα)∗ = Aα, for SL(2,R),

(iAα)∗ = (iAα)T , for SU(2).

This implies the two flat connection Aα and (Aα)∗ have the same perturbative expansion in (2.1)
as Sαn = Sαn , which further implies Bα(x) = Bα(x)∗.

3. Modular data from the geometry of M

Recently, there has been a huge progress on the calculation of the supersymmetric partition
function over various supersymmetric background via localization. In fact, it is even possible
to find some organization principles for supersymmetric partition function. For instance, the
twisted partition functions over a class of manifoldMg,p (the degree-p S1-bundles over the genus
g Riemann surface Σg) can be constructed as [3]

Zg,p =
∑
α

Zαg,p =
∑
α

(Hα)g−1(Fα)p (3.1)

where H is called the handle-gluing operator (as multiplying it increase the genus by 1) and F is
called the fibering operator(as multiplying it increase the deg of fiberation by 1).

The 3d-3d correspondence tells us

Hα = exp(−2Sα1 ) = 2Tor[Aα],

Fα = exp(iSα0 /(2π)) = exp(−2πiCS[Aα,M])

where Tor(Aα) is the adjoint Reidemeister torsion of the irreducible SL(2,C) flat connection Aα.
If we set p = 0, then the partition function overMg,p reduces to the partition function over

S1 × Σg, thus compute the ground states degeneracy of T (M) over the Riemann surface Σg:

GSDg =
∑
α

(2Tor[Aα])g−1.

This relation also hints the anyons are labelled by the irreducible flat connection Aα (and
equivalently, the Bethe vacua α) and should has the quantum dimension 2Tor[Aα].

We can also extract the modular Tαβ from theMg,p partition function by comparing (3.1)
with the generic result from TQFT [4]:

Z[Mg,p] =
∑
α

S2−2g
0α T−pαα ,
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we find

(S0α)2 =
1

2Tor[Aα]
, Tαα = exp(−2πiCS[Aα]).

To extract the full Sαβ, we consider quantize the theory T [M] on 2-torus with two linear
independent cycle A and B. We will denote the anyon α wrapping around A/B-cycle as OAα /OBα .
Those two sets of operators are related by

OAα = S−1OBα S.

We choose the basis of ground states as

|α〉 = OBα |0〉.

Then we find

OBα |β〉 = OBαOBβ |0〉 =
∑
γ

Nγ
αβ|γ〉,

OAα |β〉 = (S−1OBα S)|β〉 =
Sαβ
S0β
|β〉 ≡ Wβ(α)|β〉,

where we have used the Verlinde formula. Since we’ve already know S0β from previous discussion,
then knowing Wβ(α) = 〈β|OAα |β〉 would allow us to find the full Sαβ .

To relate 〈β|OAα |β〉 to the geometry of M, we must again use 3d-3d correspondence. It is
natural to interpret anyons in T [M] as M2 branes wrapping around 1-cycles of the internal
manifoldM. Hence, the anyon α in T [M] naturally correspond to the loop operators (that is,
the Wilson lines) in the SL(2,C) CS theory overM. The Wilson lines are labelled by a ∈ π1(M)

and an irreducible representation R. In the ~ → 0 limit, we focus on the flat connections Aα,
which are equivalent to SU(2) or SL(2,R) connections. The irrep is determined by the number n
of M2 brane via R = Symn�.

On the other hand, we can relate the flat connection Aα as a group homomorphism ρα from
π1(M) to SL(2,R) or SU(2). Hence, we have the correspondence between anyon α in T (M) and
the loop operators ⊗

κ

(
a(κ)α , R(κ)

α

)
where κ runs over linear independent cycles of Σg.

This correspondence allows us to identify the vev of OAα at the vacuum |β〉, Wβ(α), as the
vev of loop operators

⊗
κ

(
a
(κ)
α , R

(κ)
α

)
at the irreducible flat connection ρβ . Then we have

Wβ(α) =
∏
κ

Tr
R

(κ)
α

(
ρβ(a(κ)α )

)
.
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