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In this paper, we will present a journey about chiral central charge from conformal field theory
(CFT) to topological theory of phases. We will first show that the chiral central charge is more
about how the system respond to the property of spacetime manifold via a example of modular
transformation in both CFT and an anyon model without CFT. Then we will present a purely
topological formalism in terms of topological partition functions of gravitational Chern-Simons (CS)
term, which can relate the chiral central charge to other quantities about topological phases.

INTRODUCTION

It’s very remarkable that any system with non-zero
Chern number has gapless modes[1]. These modes are
chiral, meaning that they propagrate in a certain direc-
tion.

The first hint of its relation with topology arised from
Hall conductance. In a two-dimensional system of free
fermions, when the Fermi energy lies in the j-th energy
gap, the Hall conductance is

σedge
xy =

j∑
l=1

σl,edge
xy = −e

2

h
ν(C(µj)), (1)

where ν(C(µj)) is the winding number of the loop arond
the j-th hole in the Riemann surface of the Bloch func-
tion under some rational flux φ = p/q[2]. In fact, the

FIG. 1: Riemann surface of the Bloch function under some
rational flux φ = p/q. C(µj) is a loop of zero point of wave

function Ψq(z) around the j-th hole.

edge modes consist of both left-moving and right-moving
modes:

νedge := (# of left-movers−# of right-movers) = ν. (2)

The chiral edge modes carry energy. It can be derived
from CFT that the energy current along the edge in the
left direction is

I =
π

12
c−T

2, (3)

where T is the temperature and assumed to be much
smaller than the energy gap in the bulk[3]. c− is the
chiral central charge:

c− = c− c̄, (4)

where c and c̄ are the Virasoro central charges. It’s re-
lated to the edge moded by

c− =
ν

2
, (5)

which keeps invariant under the change of some condi-
tions in the edge. This indicates that the edge energy
currect is a property of the bulk groundstate.

From the introduction above, it’s quite natural to be-
lieve there must be some links between the chiral central
charge in CFT formalism and the winding number or
Chern number in topological point of view. In the rest
of this paper, we will show that, indeed, the concept of
chiral central charge contains information of topological
phases and should be understood beyond the scope of
CFT.

MODULAR TRANSFORMATIONS IN
CONFORMAL FIELD THEORY AND BEYOND

In this section, we will first briefly introduce modu-
lar transformation in CFT. Then we will demostrate the
correspondence between the characters in CFT and the
partition function beyond CFT under the Dehn twist.
Such a correspondence indicates the chiral central charge
is a more general concept which is related to spacetime
manifolds, and can therefore go beyond CFT formalism.

Modular Transformations

In the CFT derivation of the edge current, the chi-
ral central charge gets involved in the results when we
perform some conformal transformation to the original
Riemann surface[3], and it’s related to the calculation of
edge energy current by calculating the energy stress ten-
sor. Let’s consider a specific example, say a torus, to
which we can perform a modular transformation.

The modular transformation is defined as follows[4]:
Consider two oreinted cycles C(τ) and C(x) on the torus.
C(τ) represent a loop parameterized by Euclidean time
τ , with direction of time evolution generated by L0, and
C(x) connects points of the equal time. Let [φi] be a
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representation of a primary field φi, then the character
χi of the chiral symmetry algebra is defined by

χi = tr[φi]

(
qL0+ε

)
, (6)

where q = e2πiτ and ε = −c−/24. τ is the modular
paramter of the torus. Then the actions of modular group
are generated by

T : τ → τ + 1, S : τ → −1

τ
. (7)

Then the corresponding transformaiton of the character
χi is

T : χi → e2πi(hi+ε)χi, S : χi → S ji χj , (8)

where hi is the conformal dimension of the primary field
φi and S ji is a unitary matrix, whose square S2 inverts
the time direction and transforms χi to its conjugate rep-
resentation S2 = C : χi → χ∗i .

Correspondence between Characters and Partition
Functions under Mocular Transformation

Consider the partition function Z = tr(e−βH) of an
anyon model on a disk with circumfence L, with time
period β = 1/T . We can then make the disk into a
manifold M = D2 × S1, so that the edge is now a torus.
Assume the energy gap in the bulk is much larger than
the temperature and act on the system with a time-like
Wilson loop operator Wa(`), then the partition function
is[1]

Za = χa(1/w) = S b
a χb(w) ∼ S0

aχ0(w), w →∞, (9)

where w = iLT/v and the last equality is due to the
fact that the characters of excitations are exponentially
smaller than the vacuum character.

Now consider Dehn twist. The transformation of the
vacuum character under the Dehn twist can be general-
ized to be

χ0(w + 1) = e−2πic−/24χ0(w), (10)

where the subscript ”0” stands for vacuum. Then in
the thermodynamic limit, the transformation of partition
function under the Dehn twist is

Z ′a = e−2πic−/24Za, (11)

Finally, we can conclude that the characters in CFT cor-
responds to a linear combinations of the partition func-
tion:

χa(w)↔ Z̃a = s b̄aZb, (12)

where s is a topological S-matrix defined by anyonic brad-
ing. They all have the transformation property

Z̃ ′a = e−2πic−/24θaZ̃a ↔ χa(w + 1) = e−2πic−/24θaχa,
(13)

where θa is the topological spin of a.[1] Therefore, we
can conclude that the chiral central charge gets involved
in the transformation of the partition function under the
modular transformation of spacetime manifold.

From this section, we can have a sense that the chiral
central charge should be related to the topology of the
spacetime manifold via partition functions.

CHIRAL CENTRAL CHARGE AND
TOPOLOGICAL PHASES

In this section, we will present the relation between
the chiral central charge and the topological phases. To
follow the previous discussions of partition function, we
will use topological partition functions (or path integral)
formalism and relate the chiral central charge to other
characters of topological phases.

Topological Partition Function and Winding
Numbers

There is an amazing reasult that a boundary-gappable
topological order is fully characterized by a collection of
representations of the mapping class groups MCG(MD)
for various spatial topologies[5]. The MCG(MD) group
is defined in terms of the orientation preserving homeo-
morphism group: MCG(MD) ≡ π0[Ghomeo(MD)].

In general, a partition function on a closed D dimen-
sional spacetime manifold MD is defined as

Z(MD) = e−cDL
D−cD−1L

D−1−···−c0L0−c−1L
−1−···, (14)

where L is the linear size of MD. Suppose the ground-
state doesn’t contain point-like, string-like, ect defects,
then cd = 0 for d = 1, 2, · · · , D − 1. The partition func-
tion is now

Zt(MD) = lim
L→∞

Z(MD)

e−cDLD
, (15)

which is volume-indenpendent and topological.
LetMD be the moduli space of MD, then the non-zero

Zt(·) forms a map

Zt :MD → C− {0} ∼ U(1). (16)

Then because π1(MD) = MCG(MD), the winding num-
ber is a group homomorphism

MCG(MD)→ Z = π1(U(1)), (17)

which can be realized by the topological partition func-
tion Zt(MD) of the gravitational CS terms ωD[5–7]:

Zt(MD) ∼ exp

(
i

∫
MD

ωD

)
. (18)
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For a spacetime of dimension D = 4n + 3, the winding
number ν is then given by

ν =

∫
MD×S1

dωD. (19)

The calculation of the edge energy currect does include
such a gravitational CS term[6], and chiral central charge
c− = sgn(K) gets involved as a coefficient factor[7].
Therefore, we can see it’s related to the winding num-
ber. In the next section, we will show its relation to
Chern number.

Information of Topological Phases

After we present the topological partition function and
its relation to the winding number, we can then obtain
the information out of the partition function and find
some interesting relation between chiral central charge
and topological phases.

Consider a d dimensional closed space Σd, in which the
Hamiltonian is well-defined and gapped. The spacetime
MD is Σd×S1, with D = d+1. The topological partition
function is

Zt(MD) ∼ exp

(
i

∫
MD

ω

)
= exp

(
i

∫
VD

dω

)
, (20)

where VD = Σd × B and ∂VD = Σd × S1. Notice VD =
Σd×B can be considered as a fiber bundle with the space
Σd and base manifold B and dω is given by combinations
of Pontryagin class dω = P = κn1n2···Pn1n2···, then the
integral in Eq.(20) includes Chern number∫

B

C =

∫
VD

Pn1n2··· (21)

of a complex line bundle on B[8]. It can be further shown
that

DΣd

∫
VD

dω ∈ Z, (22)

where DΣd = |ZtMD| is the groundstate degeneracy.
This result gives a constrain between

∫
dω and DΣd and

relates the chiral central charge to Chern numbers.
For example, consider a D = 2n + 1 theory, say d =

2n = 2, we can conclude from Eq.(22) that

c−
24
Dg

∫
Σ2×B2

p1 =

∫
B2

C ∈ Z, (23)

where p1 is the first Pontryagin class and the result of
its integration is ±12. Therefore, we conclude that for
a 2d bosonic topological orders, the chiral central charge
of the edge state is quiantized as cDg/2 ∈ Z, where Dg

is the groundstate degeneracy on genus-g space. There
is also a similar result for fermionic topological order[5].

With these results, the chiral central charge can pro-
vide lots of information. Here are two examples[8]:

• If the central charge of a bosonic quantum Hall
state is 1, then the groundstate degeneracy for
g ≥ 3 space must be even.

• Given the chiral central charge, we can obtain the
statistic of the topological excitations:

e2πic−/8 =

∑
α d

2
αe
iθα√∑

α d
2
α

, (24)

where α labels the particle-like excitations. θα is
the statistic angle and dα is the quantum dimen-
sion.

We can see that, by manipulating the topological parti-
tion functions, we could obtain many conclusions of topo-
logical phases via chiral central charge. Even more, there
is a conjuecture, claiming that given the chiral central
charge and representations of the mapping class groups
for all genus-g surface, one can fully characterize 2d topo-
logical orders[9].

By now, we finished our journey about chiral central
charge from CFT to topological phases. The formalism
we presented in this paper is mainly in terms of partition
functions. Actually, there is another formalism, namely
Hamiltonian formalism, in which we can also define chi-
ral central charge by constructing 2-current from gapped
local Hamiltonian H =

∑
j Hj . Starting from this defi-

nition, we can also see the relation between chiral central
charge and other topological quantities such as Chern
numbers[1, 5].

SUMMRIZE

In this paper, we started from a specific example –
modular transformation to show that the chiral central
charge is not a mere concept in CFT, but more impor-
tantly, a topology-related quantity. From the example of
modular transformation, we can see that we could find
the role of the central charge in the description of the
system via partition functions. This formalism, as we
presented in the last section, can be applied in topologi-
cal theory. Then by playing with the partition functions,
we can conclude lots of relations between the chiral cen-
tral charge and other quantities of topological phases.
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