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In this short term paper, I will provide a birds-eye view of the deep and fascinating connection
between Donaldson theory on smooth 4-manifolds and supersymmetric Yang-Mills theories, which
is one of the many beautiful offsprings from the happy marriage of physics and math. Lots of details
are glossed over and many facts are stated without proof, so reference to original literature is highly
encouraged.

INTRODUCTION

In mathematics, classification of topological manifolds
in four dimensions had been a difficult problem. Many
of the techniques used for manifolds in higher dimen-
sions fail for 4-manifolds. Freedman’s results in 1982
helped to classify topological 4-manifolds up to homeo-
morphism (continuous bijection with continuous inverse)
based on intersection forms [3]. However, Freedman’s re-
sults did not solve the classification of topological smooth
4-manifolds up to diffeomorphism (bijective maps and in-
verses have to be smooth). This problem was solved by
Donaldson in 1983 by studying the moduli space of SU(2)
instantons of Yang-Mills theory defined on smooth 4-
manifolds [2]. Later in 1988, Witten considered topologi-
cal supersymmetric YM theory with matter fields added,
and reformulated Donaldson invariants in terms of cor-
relation functions [6]. The reformulation in correlation
functions was not a useful way to actually calculate the
invariants. It was not until 1994, when Seiberg and Wit-
ten solved the N = 2 supersymmetric YM theory by
finding the abelian dual theory of monopoles [5], that
Witten was able to calculate the Donaldson invariants
using the U(1) monopole moduli space [7].

The field theory approaches make sense because in
both cases the topological properties of the field theories
spit out information about the topology of the underlying
4-manifold. This is reminiscent of the famous index the-
orem, which also played an essential role in the theories
of Donaldson and Seiberg-Witten.

In writing this short paper, I also benefited a lot from
review lectures by Dijkgraaf [1] and those by Marino [4].

DONALDSON THEORY

Donaldson theory studies the non-abelian SU(2) Yang-
Mills theory defined on a 4-manifold X, on which we can
define the principal bundle P with section A as the SU(2)
gauge field. F is the corresponding curvature.

Moduli Space for SU(2) Instantons

Given a metric g on X, the Hodge ∗ operation can be
defined and it satisfies ∗2 = 1, which means the operator
has eigenvalues ±1, with corresponding 2-form eigenvec-
tors: ∗F± = ±F±. For any F , we can construct these
eigenvectors to be F± = F ± ∗F . Now consider the YM
theory

SYM =
1

2

∫
X

trF ∧ ∗F

=
1

4

∫
X

tr(F±)2 ∓ 2trF ∗ F

≥ 1

4

∫
X

∓2trF ∗ F = 8π2|I|,

(0.1)

where I is the instanton number. The classical mini-
mum of the YM action is achieved when F+ = 0 (i.e.
F = −∗F ) or F− = 0 (i.e. F = ∗F). These solutions are
naturally called anti-self-dual (ASD) and self-dual (SD).
They are also called instanton solutions because the ac-
tion is completely determined by the instanton number
at these solutions. With out loss of generality, we will
just choose to focus on the ASD instantons, i.e. F+ = 0.

We have to note that these solutions may not be
completely inequivalent, giving the possibility of relat-
ing different field configurations through gauge transfor-
mations. Thus, the actually ASD solution space, or the
moduli space, is given by M = {[A] ∈ A/G|F+(A) = 0},
where A is the space of connections and G is the space
of gauge transformations.

Donaldson Invariants

The main idea of Donaldson theory is to relate the
properties of the moduli space M to the topology of the
underlying smooth 4-manifold X. Firstly, we need a map
to relate the two very different spaces. Given a second
Chern class c2 (a 4-form) on X×M, then for any k-form
α ∈ Hk(X), we can define

α̂ ≡
∫
X

α ∧ c2, (0.2)

which is a k-form in Hk(M). This is the map that re-
lates Hk(X) and Hk(M). Under the assumption that
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X is simply connected, the only non-trivial cohomology
classes are the 2-forms v ∈ H2(X) and the volume 4-
form λ ∈ H4(X). With these ingredients, we can finally
define the Donaldson polynomials corresponding to in-
stanton number n as

DI(v, λ) =

∫
MI

exp(v̂ + λ̂), (0.3)

which, after Taylor expansion, is a polynomial contain-
ing finite number of terms with total degree matching
the dimension ofMI , the moduli space corresponding to
instanton number I. It was proven by Donaldson that
these polynomials are diffeomorphism invariants under
certain conditions (b+2 > 1). Here b±2 is the number of
positive/negative eigenvalues of the intersection matrix
on X. This condition make it possible to avoid singulari-
ties on the moduli space by deforming the metric. (Note
that the moduli space is metric dependent, even though
the topological information obtained from it does not de-
pend on the choice of metric)

We can further introduce the generating function for
these invariants by summation over all instanton num-
bers:

D(v, λ) =
∑
I≥0

DI(v, λ). (0.4)

SEIBERG-WITTEN THEORY

Dual Abelian Theory in Monopoles

Witten managed to reformulate the Donaldson invari-
ants using correlation functions in his topological super-
symmetric YM theory, but the correlation functions are
hard to evaluate without knowing the ground state of
the theory. Later Seiberg and Witten solved the theory
by mapping the original non-abelian theory to an dual
abelian theory in terms of monopoles.

Now the main players in this dual abelian theory are
the abelian gauge connection A ∈ A and a charged spinor
field M , following the notations in the original literature.
Here A is a section of a complex line bundle L and M is
a section of the bundle S+ ⊗ L, where S+ is a positive
spin bundle of rank 2 defined on X. Similarly S− is the
negative counterpart of rank 2 and the complex conjugate
spinor M̄ would be a section of S− ⊗ L. X allows spin
structures when its second Stiefel-Whitney class w2(X)
vanishes, which we assume is the case here. Then the
U(1) monopole equations are given by

F+
ij = − i

4
M̄ [Γi,Γj ]M,

ΓiDiM = 0,
(0.5)

where Γi are the Clifford matrices satisfying {Γi,Γj} =
2gij . Similar to the moduli space of the SU(2) instantons,

the U(1) monopole moduli space is now given by

Mx = {A ∈ A,M ∈ s(S+ ⊗ L)|Eq.(0.5)}/G, (0.6)

where the x ∈ H2(X) can be characterized by the first
Chern class with Chern number being the monopole num-
ber and G again is the space of gauge transformations.

Differences in Moduli Spaces: MI v.s. Mx

Now it’s a good place to mention some of the main dif-
ferences between the Donaldson SU(2) instanton moduli
spaceMI and the Seiberg-Witten U(1) monopole moduli
space Mx.

• Mx is only non-empty for finite number of x ∈
H2(X), whereas for MI the instanton number I
can be arbitrarily large.

• Mx is compact, whereas MI is non-compact. Be-
cause of this, the integration overMI in the defin-
tion of Donaldson invariants has to be carefully jus-
tified, whereas the integration overMx for the SW
invariants is manifestly well-defined.

Seiberg-Witten Invariants

In analogy to Donaldson theory, we need a map be-
tween cohomology groups of X and that ofM. The map
is now defined using the first Chern class c1 on X ×M.
For any α ∈ Hk(X),

α̂ ≡
∫
X

α ∧ c1, (0.7)

from which we see that a k-form on X is mapped to
a k − 2-form on M. More precisely, for a 2-form v, v̂
is just a number; for a 4-form λ, λ̂ is a 2-form on M.
Now we are ready to define the Seiberg-Witten invariants
corresponding to a particular monopole number to be

SWx =

∫
Mx

exp(λ̂) (0.8)

In order to relate the Donaldson invariants to the Seiberg-
Witten invariants, we have to define a new generating
function for Donaldson polynomials on 4-manifolds of
simple type. A 4-manifold is of simple type if the gener-

ating function Eq. (0.4) is annihilated by ∂2

∂λ2 − 4, i.e.

∂2

∂(2λ)2
D(v, λ) = D(v, λ). (0.9)

Because of this, only the zeroth order and first order
derivatives carry non-trivial information. Thus, we can
define a new generating function as the following

D(v) = D(v, 0) +
1

2

∂

∂λ
D(v, 0). (0.10)
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It can be shown that for X of simple type and b+2 > 1,

D(v) = 2(7χ+11σ)/4+2ev
2/2

∑
x

ev·xSWx. (0.11)
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