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This paper reviews the construction for abelian higher gauge theories using homological algebra
and a general formula to calculate entanglement entropy (EE) and topological entanglement entropy
(TEE).

1. INTRODUCTION

Nowadays, two dimensional topological order and
TEE[1] are relatively well understood. If we want to
study topological order in dimension larger than 2, do we
expect similar behaviors of the TEE compared to TEE
in 2D[2]? To gain more insights on topological order in
higher dimensions, people have studied the general struc-
ture of EE and TEE of abelian higher gauge theories on
lattice. Those theories can be interpreted as higher gauge
generalizations of the Toric Code.

This review paper is mainly based on ref. [3] and [4].
The content is organized as follows. In section 2, we dis-
cuss the construction of lattice models that come from
higher gauge theories using homological algebra. In sec-
tion 3, we summarize the general formula for EE and
TEE.

2. REVIEW ON ABELIAN HIGHER GAUGE
THEORIES

Geometrical content and group theoretic content

We consider a general lattice in d dimension. The lat-
tice K is made of simplices, where we can write it as
K = K0∪K1∪ ...∪Kd and Kn is the set of n-dimensional
simplices.

Let Cn be the Abelian group freely generated by Kn.
If we write the group operation as addition, each group
element c in Cn can be written as c =

∑
x∈Kn

n(x)x,
where n(x) ∈ Z.

We have the usual boundary map ∂Cn : Cn → Cn−1.
Using the boundary map we can define an chain com-
plex (C(K), ∂C) to describe the geometrical content of
the models

0 −→ Cd
∂C
d−−→ Cd−1

∂C
d−1−−−→ ...

∂C
1−−→ C0 −→ 0. (1)

To describe the higher gauge groups that label the de-
grees of freedom in the simplicial complex, we define an-
other chain complex (G, ∂G) of finite Abelian groups,

0 −→ Gd
∂G
d−−→ Gd−1

∂G
d−1−−−→ ...

∂G
1−−→ G0 −→ 0, (2)

where 0 denotes the trivial group and ∂Gn : Gn → Gn−1
are group homomorphisms such that ∂Gp · ∂Gp+1 = 0, for

any 0 ≤ p ≤ d.
A gauge configuration f = {fn}dn=0 is a sequence of

functions such that fn : Kn → Gn. Because Cn is freely
generated by Kn, each map fn defines a unique group
homomorphism fn : Cn → Gn.

We define Hom(Cn, Gn) to be the set of all homomor-
phisms fn and Hom(Cn, Gn) is itself an Abelian group if
we set

(fn+ f̃n)(x) = fn(x)+ f̃n(x), fn, f̃n ∈ Hom(Cn, Gn) (3)

We can collect all such Hom(Cn, Gn) into a single direct
sum

hom(C,G)0 :=

d⊕
n=0

Hom(Cn, Gn). (4)

A gauge configuration f ∈ hom(C,G)0 can be repre-
sented by a collection of maps between (C(K), ∂C) and
(G, ∂G), see Fig 1.

FIG. 1: Example of two elements f ∈ hom(C,G)0 and
g ∈ hom(C,G)1

Generally, we can define

hom(C,G)p :=

d⊕
n=0

Hom(Cn, Gn−p).

The abelian groups hom(C,G)p give rise to a cochain
complex (hom(C,G)•, δ•)

... −→ hom(C,G)p
δp−→ hom(C,G)p+1 −→ ..., (5)

where δp : hom(C,G)p → hom(C,G)p+1 is defined by

(δpf)n := fn−1∂
G
n − (−1)p∂Gn−pfn, (6)

and it can be checked that δp+1 · δp = 0.
We want to define a chain complex that is the dual of

equation (5). Since Gn is a finite abelian group, all ir-
reducible unitary representations of Gn forms an abelian
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group, which we denote as Ĝn. We define the dual of
hom(C,G)p as hom(C,G)p,

hom(C,G)p :=

d⊕
n=0

Hom(Cn, Ĝn−p). (7)

Introducing the dual description allows us to define
something analogous to inner product. We define the
pairing 〈·, ·〉 : hom(C,G)p × hom(C,G)p → U(1) to be

〈m, f〉 :=

d∏
n=0

∏
x∈Kn

mn(x)(fn(x)). (8)

Let us define the dual boundary map δp :
hom(C,G)p → hom(C,G)p−1 to be

〈δpm, f〉 = 〈m, δp−1f〉. (9)

Evidently, δp · δp+1 = 0 and thus the dual chain complex
is given by

...
δp−1←−−− hom(C,G)p−1

δp←− hom(C,G)p ←− ... (10)

Hilbert space, operators, and Hamiltonian

An orthonormal basis {|f〉} of the Hilbert space is de-
fined by

|f〉 :=
⊗
n

⊗
x∈Kn

|fn(x)〉 , f ∈ hom(C,G)0. (11)

We can define generalized gauge transformation op-
erators At and holonomy measure operators Bm. For
t ∈ hom(C,G)−1 and m ∈ hom(C,G)1,

At |f〉 :=
∣∣f + δ−1t

〉
, Bm |f〉 := 〈m, δ0f〉 |f〉 . (12)

However, we notice that At and Bm act on the entire
lattice, so for the purpose to define a Hamiltonian, we
need to define localized gauge transformation operators
and localized holonomy measure operators.

Let x ∈ Kn, g ∈ Gn+1 and r ∈ Ĝn−1. We define
the local maps ê[n, x, r] ∈ hom(C,G)1 and e[n, x, g] ∈
hom(C,G)−1 by

e[n, x, g](y) :=

{
g, if y = x
0, otherwise

(13)

ê[n, x, r](f) := r(fn(x)), (14)

where y ∈ K, and f ∈ hom(C,G)p. We define local
gauge projector An,x and local holonomy projector Bn,x
as:

An,x =
1

|Gn+1|
∑

g∈Gn+1

Ae[n,x,g], (15)

Bn,x =
1

|Gn−1|
∑

r∈Ĝn−1

Bê[n,x,r]. (16)

Using the localized projectors defined above, the
Hamiltonian is written as

H = −
d∑

n=0

∑
x∈Kn

An,x −
d∑

n=0

∑
x∈Kn

Bn,x (17)

It is straightforward to verify that An,x and Bn,x are
commuting projectors, so a state in the groundstate has
eigenvalue 1 for all An,x and Bn,x.

Let’s define another two projectors to characterize the
groundstate Hilbert space H0:

A0 =
1

|hom(C,G)−1|
∑

t∈hom(C,G)−1

At (18)

B0 =
1

|hom(C,G)1|
∑

n∈hom(C,G)1

Bm, (19)

ProjectorA0 maps any state into a normalized sum of
gauge equivalent state. Projector B0 gives eigenvalue 1
for state |f〉, only if f ∈ ker (δ0), which is also called flat
holonomy (See ref. [3] for a detailed explanation).

The projector that projects on to the groundstate sub-
space H0 is Π0 := A0B0. The dimension GSD of H0 is
given by the number of flat states |ker (δ0)|, modulo the
gauge equivalence |Im(δ−1)|, that is

GSD =
|ker (δ0)|
|Im(δ−1)|

= |H0(C,G)|. (20)

3. ENTANGLEMENT ENTROPY AND
TOPOLOGICAL ENTANGLEMENT ENTROPY
IN ABELIAN HIGHER GAUGE THEORIES

Bipartition of the geometrical chain complex

In order to compute the entanglement entropy of a
region A in the lattice, we need to define the biparti-
tion of the lattice into regions A and B. We divide each
n-simplicies into the form Kn = Kn,A ∪Kn,B . The sub-

complex KA is given by KA =
⋃d
n=0Kn,A.

Similarly, we have a chain complex (C(KA), ∂CA ) asso-
ciated to the subcomplex KA. Homomorphisms between
(C(KA), ∂CA ) and the same chain complex of abelian
groups give rise to the groups

hom(CA, G)p :=
⊕
n

Hom(Cn,A, Gn−p) (21)



3

Reduced density matrix

We consider a quantum state |ψ〉, which is the equal
weight superposition of all the groundstates. Its density
matrix is given by,

ρ :=
Π0

trΠ0
=

Π0

GSD
(22)

Using the expression in equation () and rewriting the
summation in A0 and B0 to only sum over elements that
act non-trivially on the states. The density matrix can
be written as

ρ =
1

GSD

1

|Im(δ−1)||Im(δ1)|

(∑
[t]

At

)(∑
[m]

Bm

)
,

(23)

where [t] ∈ hom(C,G)−1

ker (δ−1) and [m] ∈ hom(C,G)1
ker (δ1)

.

Now we are ready to calculate the reduced density ma-
trix for A,

ρA =
∑
i

〈bi| ρ |bi〉 , (24)

where {|bi〉} is the basis of the Hilbert space over region
B.

When evaluating the summation in ρA, there is a sub-
tlety for gauge transformation operators labeled by ele-
ments that lie at the boundary of A, because they do not
act exclusively on region A[3]. So we only consider gauge
transformation in the interior of A, which we call Ã. Let
Kn,Ã = {x ∈ Kn,A|x ∩ ∂A = ∅} and Ã :=

⋃d
n=0Kn,Ã.

The final expression for ρA is

ρA =
1

dim(HA)

(∑
p,q

ApBq

)
, (25)

where where p ∈ hom(CÃ,G)−1

ker (δ−1
A )

and q ∈ hom(CA,G)1
ker (δ1|A) .

Entanglement entropy

Using the expression

ρ2A =
|Im(δ0A)||Im(δ−1

Ã
)|

dim(HA)
ρA = λρA. (26)

The EE of region A is given by

SA = −Tr (ρA log(ρA)) = log(
1

λ
), (27)

where we evaluate the logarithm of ρA by series expansion
and we use Tr (ρA) = 1.

Using the expression,

dim(HA) = |hom(CA, G)0| = |ker (δ0A)| |Im(δ0A)|

we can relate SA to the ground state degeneracy of HÃ,
that the EE is given by:

SA = log

(
|ker (δ0A)|
|Im(δ−1

Ã
)|

)
= log(GSDÃ). (28)

Topological entanglement entropy

Notice that the quantity GSDÃ has relation to both
region A and the boundary ∂A. If we want to extract
subleading topological terms from SA, we would have
topological contribution to the EE from topological in-
variants of region A and topological invariants of the en-
tangling surface ∂A. Thus, for higher gauge theories, the
TEE depends on the Betti numbers of A and ∂A.

With some detail calculations (See ref. [3]), one finds
that SA can be written as

SA = S∂A + STopo, (29)

where

S∂A =
d−1∑
n=0

d∑
p=1

(−1)(p+1)|Kn,∂A| log(|Gn+p|) (30)

corresponds to the area law term and

STopo =

d∑
n=0

log(|Hn(CA, Hn(G))|)

+

d−1∑
n=0

d∑
p=1

(−1)p log(|Hn(C∂A, Hn+p(G))|)

(31)

is the topological entanglement entropy. We can see that
STopo explicitly depends on the topology of A and ∂A.

4. CONCLUSION

To sum up, homological algebra is a natural structure
to study abelian higher gauge theories on lattice. The
formalism allows us to systematize the computation of
ground state degeneracies, EE, and TEE.

In section 2, we explicitly calculate the GSD of this
kind of models and show that it is equal to the dimen-
sion of the homology group H0(C,G).

We started to calculate the EE by first defining the
density matrix of ground state. To obtain the reduced
density matrix we considered a general bipartition of the
simplicial complex K into a subcomplex A and its com-
plement B. The reduced density matrix ρA included op-
erators that exclusively act on region A. Using the ex-
pression for ρA, we computed the EE of region A and it
can be interpreted as the ground state degeneracy of re-
gion A. Then we further divided SA into two terms: one
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being the area law term, a term depending on the geom-
etry of the entangling surface ∂A, and the other being
the TEE, a term depending on the topological properties
of both A and ∂A.
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