
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2022
Assignment 1 – Solutions

Due 11:59pm Monday, January 10, 2022

• Please hand in your homework electronically via Canvas. The preferred option is

to typeset your homework. It is easy to do and you need to learn to do it anyway

as a practicing scientist. A LaTeX template file with some relevant examples is

provided here. If you need help getting set up or have any other questions please

email me. I am happy to give TeX advice.

• To hand in your homework, please submit a pdf file through the course’s Canvas

website, under the assignment labelled hw 01.

Thanks in advance for following these guidelines. Please ask me by email if you

have any trouble.

1. Brain-warmer. Convince yourself that

(∂g)
n e−1/g|g=0 = 0 ∀n.

This means that a function of the form e−1/g does not have a useful series expan-

sion about g = 0.

2. Scale invariant quantum mechanics.

Consider the action for one quantum variable r with r > 0 and

S[r] =

∫
dt

(
1

2
mṙ2 − V (r)

)
, V (r) =

λ

r2
.

(a) Show that the (non-relativistic) mass parameter m can be eliminated by

a multiplicative redefinition of the field r or of the time t. As a result,

convince yourself that the physics of interest here should only depend on the

combination mλ. Show that the coupling mλ is dimensionless: [mλ] = 0.

As before in 0+1 dimensions, demanding that [Skinetic] = 0 = −1+2−2[
√
mr]

implies [
√
mr] = −1

2
. So 0 = [

∫
dt λ

r2
] = −1 + [λm] + 2[

√
mr] = [λm] – we

see that [λm] = 0. Notice that the mass can be scaled away be redefining

the variable r. The physics will only depend on λm.
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(b) Show that this action is scale invariant, i.e. show that the transformation

r(t)→ sα · r(st) (1)

(for some α which you must determine), (with s ∈ R+) is a symmetry. Find

the associated Noether charge D. For this last step, it will be useful to note

that the infinitesimal version of (1) is (s = ea, a� 1)

δr(t) = a

(
α + t

d

dt

)
r(t).

With the finite form of the transformation it is easier to check that the

action is invariant. Especially with a symmetry that acts on spacetime, we

must be careful about active and passive issues – this problem is actually a

bit of a nightmare of signs because of that. Then

S[sα · r(st)] =

∫
dt

(
1

2
m (sα∂tr(st))

2 − λ

(sαr(st))2

)
(2)

ts≡st=

∫
dtss

−1

(
1

2
ms2s2α (∂tsr(ts))

2 − λs−2αr−2(st)

)
. (3)

I emphasize that it is the dynamical field r(t) that transforms, not the time

coordinate, which is just a dummy variable. The RHS of (3) equals S[r(t)]

if 2α + 2− 1 = 0 and −2α − 1 = 0 which both require α = −1
2
. Note that

this agrees with our naive dimensional analysis.

In field theory the way to find the Noether current is the following. If

we know that under a transformation φ→ φε with parameter ε constant in

spacetime, the action does not change: S[φ] = S[φε] then if we allow ε = ε(x)

(infinitesimal) then the variation must be proportional to derivatives of ε:

δS ≡ S[φε(x)]− S[φ] =

∫
dDx∂µεj

µ(x)

for some functional of the fields jµ. The RHS is δS = −
∫
dDxε∂µj

µ by

integration by parts (we assume no boundary); but this must vanish for

constant epsilon! Therefore ∂µj
µ = 0. jµ is the conserved noether current.

Its time component, integrated over space, is time independent:

d

dt
Q ≡ d

dt

∫
dD−1~xj0 = −

∫
∇ · j = 0

(again we ignore boundary terms, in space). This method is superior to

formulae you remember from classical mechanics (like Q = ∂L
∂ṙ
δr + Lδt)
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because it makes no assumptions about the dependence of the Lagrangian

on q̇ and it doesn’t require remembering anything.

In this example there is no space and we have j0 = Q. The infinitesimal

variation of r is δr(t) = a(−1
2

+ t∂t)r(t). Under the transformation (1) with

constant s, the lagrangian (L in S =
∫
dtL) rescales by L(t) → sL(st);

this is necessary to cancel the variation of the measure
∫
dt→

∫
d(ts). The

infinitesimal statement is

δL(t) = a (1 + t∂t)L(t) =
d

dt
(atL) .

But under a variation with a = a(t), we would acquire an extra term from

the variation of the kinetic term:

δ

(
1

2
mṙ2

)
= mṙδṙ = mṙȧ

(
−1

2
+ t∂t

)
r+terms that are there when ȧ = 0.

So the variation of L is

δL = ...+ ȧ

(
tL− 1

2
mṙr +mtṙ2

)
where again the ... is terms that would be there if ȧ = 0. So by the method

described above we have:

D = tL− 1

2
mṙr +mtṙ2 = t

(
1

2
mṙ2 +

λ

r2

)
− 1

2
mṙr.

We conclude that the Noether charge is

D = +Ht− 1

2
rmṙ = Ht− 1

2
rp.

We can check that on a solution of the EoM ṗ = −∂rH, ṙ = +∂pH :

d

dt
D = H − 1

2
rṗ− 1

2
pṙ = +H − 1

2
p∂pH +

1

2
r∂rH = +H − 1

2

p2

m
− 1

2

2λ

r2
= 0.

(c) Find the position-space Hamiltonian H governing the dynamics of r. Show

that the Schrödinger equation is Bessel’s equation(
− ∂2

r

2m
+
λ

r2

)
ψE(r) = EψE(r).

Show that the Noether charge associated D with scale transformations (≡
dilatations) satisfies: [D,H] = −iH. This equation says that the Hamil-

tonian has a definite scaling dimension, i.e. that its scale tranformation is
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δH = ia[D,H] = +aH. Note that you should not need to use arcane facts

about Bessel functions, only the asymptotic analysis of the equation, in

subsequent parts of the problem.

The Hamiltonian is H = p2

2m
+ λ

r2
. The quantum dilatation operator is then

D = −1
2
rp + tH (plus a possible constant term related to ordering issues

of x and p which we can neglect). We can check that this generates the

correct variation of r by commutators:

δr = −ia[D, r] = ia[−1

2
rp+tH, r] = ia

(
−1

2
r(−i) + ti∂tr

)
= a

(
−1

2
r + tṙ

)
X

(where we used the CCR [p, r] = −i). So

[D,H] = [−1

2
rp+tH,H] = −1

2
(r[p,H] + [r,H]p) = −1

2

(
+2i

λ

r2
+ 2i

p2

2m

)
= −iH.

This is the statement that the hamiltonian has definite scale dimension

(namely one). We found a conserved current, but it doesn’t commute with

the Hamiltonian. What gives? The thing that’s true is that the charge is

time independent – the total time derivative vanishes. But the total time

derivative has two parts (using the Heisenberg equations of motion):

d

dt
D = ∂tD + i[H,D] = H −H = 0.

(d) Describe the behavior of the solutions to this equation as r → 0. [Hint: in

this limit you can ignore the RHS. Make a power-law ansatz: ψ(r) ∼ r∆

and find ∆.]

Plugging in ψ(r) ∼ r∆ gives

∆(∆− 1) + 2mλ = 0 =⇒ ∆± =
1

2
±
√

2mλ+
1

4
.

This is the leading term in an expansion in r. That is, the exact solution

has a series expansion of the form

ψ(r) = r∆+

∞∑
n=0

a+
n r

n + r∆−

∞∑
n=0

a−n r
n

where all the coefficients a±n for n > 1 are determined by a±1 by the differen-

tial equation. If you plug in the ansatz r∆±
∑∞

n=0 a
±
n r

n into the Schrödinger

equation, you’ll find that the ans satisfy a (two-term) recursion relation

which specifies a Bessel function. This is called the Method of Frobenius for

studying differential equations with a regular singular point.
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(e) What happens if 2mλ < −1
4

? It looks like there is a continuum of negative-

energy solutions (boundstates). This is another example of a too-attractive

potential.

When 2mλ passes through−1
4

from above the two roots ∆± collide and move

off into the complex plane. This means that the eigenfunctions oscillate near

the origin, like eia log(r) for some constant a, for any E. This is innocuous

for E > 0 where there is already a continuum of scattering states. (Recall

that the behavior at large r satisfies −∂2
rψ = Eψ, so

ψ(r)
r→∞∼

{
ei
√
Er, E > 0

e−
√
|E|r, E < 0

) But for E < 0, a good Schrodinger equation will specify a discrete set of

energies at which we can integrate the wavefunction in from r =∞ without

encountering a singularity. This one (at 2mλ < −1
4
) instead allows any

negative E. This suggests a problem.

(f) A hermitian operator has orthogonal eigenvectors. We will show next that

to make H hermitian when 2mλ < −1
4
, we must impose a constraint on the

wavefunctions:

(ψ?E∂rψE − ψE∂rψ?E) |r=0 = 0 . (4)

There are two useful perspectives on this condition: one is that the LHS is

the probability current passing through the point r = 0.

The other perspective is the following. Consider two eigenfunctions:

HψE = EψE, HψE′ = E ′ψE′ .

Multiply the first equation by ψ?E′ and integrate; multiply the second by ψ?E
and integrate; take the difference (maybe take the complex conjugate of the

second term). Show that the result is a boundary term which must vanish

when E = E ′.

The boundary term is (the Wronskian):

ψ?E∂rψE − ψE∂rψ?E.

This is (i times) the probability current through the point r. For r → 0 the

probability has nowhere to go, (and more generally for static solutions the

probability should not be moving) so if this doesn’t vanish there is trouble.

We conclude from this analysis that when eigenstates of H go like ψ(r) ∼ r∆

with complex ∆, that H must not be Hermitian: probability is leaking into

the hole in the potential at r = 0! It does not describe a closed system.
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(g) Show that the condition (4) is empty for 2mλ > −1
4
. We must impose a

further condition on the eigenfunctions for 2mλ < −1
4

in order to satisfy (4).

[It will help to impose a boundary condition at r = ε for some UV cutoff ε.

Notice that this regulator explicitly breaks scale invariance.] Show that the

resulting spectrum of boundstates has a discrete scale invariance.

[Cultural remark: For some reason I don’t know, restricting the Hilbert

space in this way is called a self-adjoint extension.]

This model has been studied extensively, beginning, I think, with K.M.

Case, Phys Rev 80 (1950) 797. More recent literature includes Hammer and

Swingle, arXiv:quant-ph/0503074, Annals Phys. 321 (2006) 306-317. The

associated Schrödinger equation also arises as the scalar wave equation for

a field in anti de Sitter space. A recent paper which discusses connections

with the renormalization group in more detail is this one, by S. Paik.

If we plug in ψ = A+r
1
2

+iν + A−r
1
2
−iν into (4) it becomes

0 = ν
(
|A+|2 − |A−|2

)
.

An example of a condition which implies (4) is simply to impose that

a = ψ(r)|r=ε

for some constant a and ε� 1 some UV cutoff on the potential. Any other

choice of boundary condition at r = ε will have the same qualitative effect.

This is a restriction on the Hilbert space on which the Hamiltonian above

is Hermitian. It is extra short-distance information (near the origin) about

the potential, which comes with a scale: ε. The UV cutoff breaks scale

invariance. The original scale invariant theory was not well defined (as a

closed quantum system).

The result of imposing this boundary condition is the following. We need

one more piece of information about how the energy enters into the wave-

functions. We could find this by solving the equation exactly (e.g. plug it

into Mathematica). The solution is some Bessel K (K is the one that goes

to zero at large argument). More instructive is to use dimensional analysis

to notice that E scales like r−2; therefore, up to some overall factor, the

wavefunction must be a function of
√
Er. So we want to impose :

a = ψ(r)|r=ε = A+

(√
Er
) 1

2
+iδ

+ A−

(√
Er
) 1

2
−iδ

where A± are the two (real) integration constants and δ ≡
√
|2mλ− 1

4
|. A

more convenient description is in terms of amplitude and phase

a = A0ε
1
2 cos

(
δ log ε

√
E + ϕ

)
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which is satisfied for En such that

δ

2
logEε2 = −2πn+ ϕ

Or

En ∝ ε−2e−
4πn
δ .

The energies of the allowed boundstates form a geometric series. Again we

see dimensional transmutation: the energy scale that determines the bound-

state spectrum comes from the UV cutoff ε we were forced to introduce.

(h) [Extra credit] Consider instead a particle moving in Rd with a central 1/r2

potential, r2 ≡ ~x · ~x,

S[~x] =

∫
dt

(
1

2
m~̇x · ~̇x− λ

r2

)
.

Show that the same analysis applies (e.g. to the s-wave states) with minor

modifications.

[A useful intermediate result is the following representation of (minus) the

laplacian in Rd:

~p2 = − 1

rd−1
∂r
(
rd−1∂r

)
+
L̂2

r2
, L̂2 ≡ 1

2
L̂ijL̂ij, Lij = −i (xi∂j − xj∂i) ,

where r2 ≡ xixi. By ‘s-wave states’ I mean those annihilated by L̂2.]

The only differences, once we go to polar coordinates, are that there are

angular variables, and there is a centripetal term in the laplacian, `(`+1)
r2

. For

s-waves, ` = 0, we can ignore the latter complication (more generally, we can

just shift λ by `(`+1)
2m

). The wave operator is then ∇2 = −r1−d∂r
(
rd−1∂r

)
.

The only change is in the relation between the power-law behavior near r = 0

and λ from studying the r → 0 asymptotics of the schrödinger equation:(
−E − 1

2m
∇2 +

λ

r2

)
ψ ∼

(
− 1

2m
r1−d∂r

(
rd−1∂r

)
+
λ

r2
+O(r2)

)
r∆

which gives 0 = −∆(∆ + d− 2) + 2mλ and hence

∆± =
2− d±

√
(d− 2)2 + 8λ

2
.
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