University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215B QFT Winter 2022
 Assignment 2 - Solutions

Due 11:59pm Monday, January 17, 2022
Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Brain-warmer.

Use the Clifford algebra to show that

$$
\gamma^{\mu}(x p p+m) \gamma_{\mu}=-2 x \not p+4 m
$$

where as usual $\not p \equiv p^{\mu} \gamma_{\mu}$. This identity will be useful in the numerator of the electron self-energy.
2. An example of renormalization in classical physics.

Consider a classical scalar field in $D+2$ spacetime dimensions coupled to an impurity (or defect or brane) in D dimensions, located at $X=\left(x^{\mu}, 0,0\right)$. Suppose the field has a self-interaction which is localized on the defect. For definiteness and calculability, we'll consider the simple (quadratic) action

$$
S[\phi]=\int d^{D+2} X\left(\frac{1}{2} \partial_{M} \phi(X) \partial^{M} \phi(X)+g \delta^{2}\left(\vec{x}_{\perp}\right) \phi^{2}(X)\right) .
$$

Here $X^{M}=\left(x^{\mu}, x_{\perp}^{i}\right), \mu=0 . . D-1, i=1,2$, i.e. x_{\perp} are coordinates transverse to the impurity.

This example is from this paper by Goldberger and Wise.
(a) What is the mass dimension of the coupling g ? This is why I picked a codimension ${ }^{1}$-two defect.
(b) Find the equation of motion for ϕ. Where have you seen an equation like this before?
It's the Schrödinger equation for a particle in a 2 d delta function potential.

[^0](c) We will study the propagator for the field in a mixed representation:
$$
G_{k}(x, y) \equiv\langle\phi(k, x) \phi(-k, y)\rangle=\int d^{D} z e^{\mathrm{i} k_{\mu} z^{\mu}}\langle\phi(z, x) \phi(0, y)\rangle
$$

- i.e. we go to momentum space in the directions in which translation symmetry is preserved by the defect. Find and evaluate the diagrams contributing to $G_{k}(x, y)$ in terms of the free propagator $D_{k}(x, y) \equiv\langle\phi(k, x) \phi(-k, y)\rangle_{g=0}$. (We will not need the full form of $D_{k}(x, y)$.) Sum the series.
I found it convenient to do this problem in Euclidean spacetime, so G and D are Euclidean propagators.
The euclidean path integral is of the form $\int D \phi e^{-S_{0}} e^{-V}$ where S_{0} is the kinetic term and $V=\int d^{D+2} x \delta^{2}\left(x_{\perp}\right) g \phi^{2}$. So if we work in euclidean time, the two-point vertex is $-g \delta^{(2)(x)}$, and no is will appear. From the sum of diagrams of the form (just as if we had done perturbation theory in the mass)

$$
-\quad+x-\quad+x-x-\quad+x-x-x-\ldots
$$

we find a geometric series

$$
\begin{aligned}
G_{k}(x, y)= & D_{k}(x, y)-g \int d^{2} z_{1} D_{k}\left(x, z_{1}\right) \delta^{(2)}\left(z_{1}\right) D_{k}\left(z_{1}, y\right) \\
& +(-g)^{2} \int d^{2} z_{1} \int d^{2} z_{2} D_{k}\left(x, z_{1}\right) \delta^{(2)}\left(z_{1}\right) D_{k}\left(z_{1}, z_{2}\right) \delta^{(2)}\left(z_{2}\right) D_{k}\left(z_{2}, y\right)+\cdots \\
= & D_{k}(x, y)-g D_{k}(x, 0) D_{k}(0, y)+(-g)^{2} D_{k}(x, 0) D_{k}(0,0) D_{k}(0, y) \\
& +(-g)^{3} D_{k}(x, 0) D_{k}(0,0)^{2} D_{k}(0, y)+\cdots \\
= & D_{k}(x, y)-g D_{k}(x, 0)\left(1-g D_{k}(0,0)+(-g)^{2} D_{k}(0,0)^{2}+\cdots\right) D_{k}(0, y) \\
= & D_{k}(x, y)-\frac{g}{1+g D_{k}(0,0)} D_{k}(x, 0) D_{k}(0, y)
\end{aligned}
$$

(d) You should find that your answer to part 2c depends on $D_{k}(0,0)$, which is divergent. This divergence arises from the fact that we are treating the defect as infinitely thin, as a pointlike object - the δ^{2}-function in the interaction involves arbitrarily short wavelengths. In general, as usual, we must really be agnostic about the short-distance structure of things. To reflect this, we introduce a regulator. For example, we can replace the fourier representation of $D_{k}(0,0)$ with the cutoff version

$$
\begin{equation*}
D_{k}(0,0 ; \Lambda)=\int_{0}^{\Lambda} \mathrm{d}^{2} q \frac{e^{\mathrm{i} \cdot \cdot 0}}{k^{2}+q^{2}} \tag{1}
\end{equation*}
$$

Do the integral.
Note that the formula (1) would need an extra factor of \mathbf{i} if we were working in real time (in which case the interaction vertex would be $-\mathbf{i} g \delta^{2}(x)$, and the is would eat each other).

$$
D_{k}(0,0 ; \Lambda)=\int_{0}^{\Lambda} \mathrm{d}^{2} q \frac{e^{\mathrm{i} q \cdot 0}}{k^{2}+q^{2}}=\frac{1}{4 \pi} \log \frac{\Lambda^{2}+k^{2}}{k^{2}} \stackrel{\Lambda 刃 k}{\Rightarrow} \frac{1}{4 \pi} \log \frac{\Lambda^{2}}{k^{2}} .
$$

These dimensions we're integrating here are spacelike, so there's no need for any Wick rotation.
(e) Now we renormalize. We will let the bare coupling g (the one which appears in the Lagrangian, and in the series from part 2c) depend on the cutoff $g=g(\Lambda)$. We wish to eliminate $g(\Lambda)$ in our expressions in favor of some measurable quantity. To do this, we impose a renormalization condition: choose some reference scale μ, and demand that ${ }^{2}$

$$
\begin{equation*}
G_{\mu}(x, y) \stackrel{!}{=} D_{\mu}(x, y)-g(\mu) D_{\mu}(x, 0) D_{\mu}(0, y) \tag{2}
\end{equation*}
$$

This equation defines $g(\mu)$, which we regard as a physical quantity. Show that (2) is satisfied if we let the bare coupling be $g(\Lambda)=g(\mu) Z$, with

$$
Z=\frac{1}{1-\frac{g(\mu)}{4 \pi} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right)}
$$

(f) Find the beta function for g,

$$
\beta_{g}(g) \equiv \mu \frac{d g(\mu)}{d \mu}
$$

and solve the resulting RG equation for $g(\mu)$ in terms of some initial condition $g\left(\mu_{0}\right)$. Does the coupling get weaker or stronger in the UV?
You may be bothered that we previously defined the beta function as $\Lambda \partial_{\Lambda} g(\Lambda)$, in terms of the cutoff dependence. In a classically scale-invariant theory, the dependence on Λ and μ is very closely tied together, since there are no other scales in the problem.
Solving for $g(\Lambda)$ gives

$$
g(\Lambda)=\frac{g(\mu)}{1-\frac{g(\mu)}{4 \pi} \log \frac{\Lambda^{2}}{\mu^{2}}}
$$

[^1]Then

$$
\beta_{g}(g)=\frac{g(\Lambda)}{\left(1-\frac{g(\Lambda)}{4 \pi} \log \frac{\Lambda^{2}}{\mu^{2}}\right)^{2}} \frac{g(\Lambda)}{2 \pi}=\frac{g^{2}(\mu)}{2 \pi}=\frac{g^{2}}{2 \pi} .
$$

The solution is

$$
g(\mu)=\frac{g\left(\mu_{0}\right)}{1-\frac{g\left(\mu_{0}\right)}{2 \pi} \log \frac{\mu}{\mu_{0}}}
$$

which grows with μ. Something bad happens when the denominator vanishes:

$$
1=\frac{g\left(\mu_{0}\right)}{2 \pi} \log \frac{\mu_{\star}}{\mu_{0}} .
$$

This scale μ_{\star} where the coupling blows up is called a Landau pole.
3. Scale invariance in QFT in $D=0+0$. [I got this problem from Frederik Denef.]

A nice realization of QFT in $0+0$ dimensions is the statistical mechanics of a collection of non-interacting particles. The canonical partition function for a single particle (moving in one dimension) is

$$
\begin{equation*}
Z=\int \mathrm{d} P d X e^{-\beta H} \propto \sqrt{T} Z_{V}(T) \tag{3}
\end{equation*}
$$

with $H=\frac{P^{2}}{2}+V(X)$ and $T=1 / \beta$. The momentum integral is Gaussian and we can just do it. The partition function of N non-interacting indistinguishable particles is then Z^{N} / N !, which just multiplies the energy $U=T^{2} \partial_{T} \log Z$ by a factor of N, so we don't miss anything by focussing on the single particle.

Let's consider the case

$$
\begin{equation*}
V(X)=a X^{2}+b X^{4}+c X^{6} \tag{4}
\end{equation*}
$$

and figure out the important features of the temperature dependence of the thermodynamic quantities by scaling arguments.
(a) Assuming $a \neq 0, b \neq 0, c \neq 0$, find the behavior of the thermal energy U and the heat capacity $C=\partial_{T} U$ in the limit $T \rightarrow 0$ and in the limit $T \rightarrow \infty$ using scaling arguments. Which parts of the potential determine the respective limiting behaviors?
First, to understand the low-temperature behavior, let $x \equiv X / \sqrt{T}$, so that

$$
\begin{equation*}
Z_{V}=\int d X e^{-V(X) / T}=T^{1 / 2} \int d x e^{-\left(a x^{2}+b x^{4} T+c x^{6} T^{2}\right)}=T^{1 / 2} \underbrace{\int d x e^{-a x^{2}}}_{\text {some number }} \underbrace{e^{-\left(b x^{4} T+c x^{6} T^{2}\right)}}_{T_{\rightarrow}^{2} 1} . \tag{5}
\end{equation*}
$$

Therefore, $Z \stackrel{T \rightarrow 0}{\propto} T^{1 / 2+1 / 2}$. In this case the quadratic term is most important. If $Z \propto T^{\alpha}$ then $U=\alpha T$ and $C=\alpha$, so here $C=1$. To understand the high-temperature behavior, let $y \equiv X / T^{1 / 6}$ so that
$Z_{V}=\int d X e^{-V(X) / T}=T^{1 / 6} \int d y e^{-\left(c y^{6}+a x^{2} / T^{2 / 3}+b x^{4} / T^{2 / 3}\right)}=T^{1 / 6} \int d y e^{-c y^{6}} \underbrace{e^{-\left(a x^{2} / T^{2 / 3}+b x^{4} / T^{2 / 3}\right)}}_{T \rightarrow \infty}$.
So at high temperatures $C \rightarrow \frac{1}{2}+\frac{1}{6}$. At high temperature, the particle can explore the whole potential and the highest power in the potential is what matters.
(b) If some of the couplings a, b, c vanish, the low or high temperature scaling behavior may change. For example, what is the heat capacity at low temperature when $a=0, b \neq 0$?
In this case, the quartic term dominates and $Z_{V} \sim T^{1 / 4}$ and $C=3 / 4$.
A word about notation: the symbol \sim is usually used by physicists to indicate a scaling relationship, where the constant prefactors are neglected. The relation we derive here for C however is an equality in the relevant regime of temperatures - the constant is the thing that matters.s
(c) When b is sufficiently large (and $a \neq 0, c \neq 0$), there will be an intermediate temperature regime over which the heat capacity is again constant, but different from the low- and high-temperature limits. What is this heat capacity?
Same as the previous part.
(d) In general, we can think of the change of C with T as a kind of classical renormalization group (RG) flow, interpolating between 'fixed points' where C becomes constant. In general, these fixed points correspond to potentials $V(X)$ with a scaling symmetry $V\left(\lambda^{\Delta} X\right)=\lambda V(X)$ for some choice of scaling dimension Δ of X. What is the heat capacity for a fixed point with scaling dimension Δ for X ?

$$
\begin{equation*}
Z_{V}=\int d X e^{-V(X) / T}=\int d X e^{-V\left(T^{-\Delta} X\right)}=T^{\Delta} \underbrace{\int d x e^{-V(x)}}_{\text {indep of } T} \tag{7}
\end{equation*}
$$

with $x \equiv T^{-\Delta} X$. So $Z \propto T^{1 / 2+\Delta}$ and $C=\Delta+\frac{1}{2}$.
(e) Borrowing more language of the renormalization group, we can classify deformations $\delta V(X)=\epsilon X^{m}$ of a fixed point $V(X) \propto X^{2 n}$ as irrelevant, marginal, or relevant, depending on whether the deformation becomes dominant or negligible in the IR limit, i.e. in the limit of low T. Here are below
ϵ can take on any value, not necessarily small. Restricting to deformations with an $X \rightarrow-X$ symmetry, what are the relevant and irrelevant deformations of $V(X)=X^{2 n}$? (Note that a deformation $\delta V=\epsilon X^{2 n}$ can be absorbed into a redefinition of X, which does not change the heat capacity.) Lower powers than $2 n$ are relevant, higher powers are irrelevant.
(f) The T-dependence of correlation functions (here, expectation values of powers of X) at fixed points is also determined by the scaling properties. What is the T-dependence of $\left\langle X^{k}\right\rangle$ at a fixed point $V(X)=X^{2 n}$?

$$
\left\langle X^{k}\right\rangle=\frac{\int d X X^{k} e^{-V(X) / T}}{Z_{V}}=\frac{T^{\Delta(1+k)} \int d x x^{k} e^{-V(x)}}{T^{\Delta}} \propto T^{\Delta k}
$$

where $\Delta=\frac{1}{2 n}$ is the scaling dimension of X.
(g) Non-polynomial $V(X)$ can be considered as well. For example, what is the heat capacity at small and large T for $V(X)=\left(1+X^{2}\right)^{1 / n}$?
Since this function still grows at large X, the high-temperature behavior is dominated by the large- X behavior where $V(X) \sim X^{2 / n}$, so $\Delta=n / 2$. At low temperature, we Taylor expand in small X to find $V(X) \sim 1+X^{2} / n$ and find $\Delta=1 / 2$.
4. Meson scattering. Consider again Yukawa theory with fermions, with

$$
\mathcal{L}=\bar{\Psi}(\mathbf{i} \not \partial-m) \Psi+\frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi-\frac{1}{2} M^{2} \phi^{2}+\mathcal{L}_{\mathrm{int}}
$$

and $\mathcal{L}_{\text {int }}=g \bar{\Psi} \Psi \phi$.
(a) Consider the correction to the process $\phi \phi \rightarrow \phi \phi$ coming from a fermion loop. What counterterm is required to renormalize this interaction? (You don't need to actually do the integral for this problem.)
The one-loop contributions come from a fermion loop with four $\phi \mathrm{s}$ attached by the Yukawa vertex. There are various such diagrams related by exchanging the external momenta. A counterterm which can absorb its cutoff dependence is a ϕ^{4} term.
(b) Do you need a cutoff-dependent counterterm of the form $\delta_{3} \phi^{3}$ in this theory? It seems like you might, since you can draw a fermion loop and attach three external legs. Naively this goes like $\int \frac{d^{D} p}{p^{3}}$ which is divergent for $D \geq 3$. However, the spinor trace vanishes at zero external momentum. This means the leading contribution must be proportional to powers of the external momenta and therefore (by Taylor expansion) is proportional to $\int \frac{d^{D} p}{p^{5}}$ which is finite for $D \leq 5$.

A better answer might be to argue that there is a $\phi \rightarrow-\phi$ symmetry, which would forbid a ϕ^{3} interaction. Such a symmetry would have to act on ψ as well in order to preserve the Yukawa term. It would have to act by a discrete symmetry under which $\bar{\psi} \psi$ is odd. As you can remind yourself in Peskin $\S 3$, there is such an operation. But - the mass term $m \bar{\psi} \psi$ would be odd under this term. This shows that the answer must be proportional to m, and then dimensional analysis shows that it is finite.
Note that an on-shell process $\phi \rightarrow \phi \phi$ is forbidden by kinematics (i.e. energy and momentum conservation) unless ϕ is massless. This doesn't mean that we wouldn't need a counterterm for it if it were cutoff dependent: it can appear as part of a more complicated process, such as $\phi \phi \rightarrow \phi \phi$.
5. Electron-photon scattering at low energy. [This is an optional bonus problem for those of you who wish to experience some of the glory of tree-level QED.]
Consider the process $e \gamma \rightarrow e \gamma$ in QED at leading order.
(a) Draw and evaluate the two diagrams.
(b) Find $\frac{1}{4} \sum_{\text {spins,polarizations }}|\mathcal{M}|^{2}$.
(c) Construct the two-body final-state phase space measure in the limit where the photon frequency is $\omega \ll m$ (the electron mass), in the rest frame of the electron. I suggest the following kinematical variables:
$p_{1}=(\omega, 0,0, \omega), p_{2}=(m, 0,0,0), p_{4}=\left(\omega^{\prime}, \omega^{\prime} \sin \theta, 0, \omega^{\prime} \cos \theta\right), p_{3}=p_{1}+p_{2}-p_{4}=\left(E^{\prime}, p^{\prime}\right)$
for the incoming photon, incoming electron, outgoing photon and outgoing electron respectively.
(d) Find the differential cross section $\frac{d \sigma}{d \cos \theta}$ as a function of ω, θ, m. (The expression can be prettified by using the on-shell condition $p_{3}^{2}=m^{2}$ to relate ω^{\prime} to ω, θ. It is named after Klein and Nishina.) Compare to experiment.
(e) Show that the limit $E \ll m$ gives the (Thomson) scattering cross section for classical electromagnetic radiation from a free electron.

[^0]: ${ }^{1}$ An object whose position requires specification of p coordinates has codimension p.

[^1]: ${ }^{2}$ Note that if we worked in real time, there would be an extra \mathbf{i} in front of the second term on the RHS.

