University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2022 Assignment 2

Due 11:59pm Monday, January 17, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Brain-warmer.

Use the Clifford algebra to show that

$$\gamma^{\mu} \left(x \not\!\!p + m \right) \gamma_{\mu} = -2x \not\!\!p + 4m$$

where as usual $p \equiv p^{\mu} \gamma_{\mu}$. This identity will be useful in the numerator of the electron self-energy.

2. An example of renormalization in classical physics.

Consider a classical scalar field in D + 2 spacetime dimensions coupled to an *impurity* (or defect or brane) in D dimensions, located at $X = (x^{\mu}, 0, 0)$. Suppose the field has a self-interaction which is localized on the defect. For definiteness and calculability, we'll consider the simple (quadratic) action

$$S[\phi] = \int d^{D+2}X\left(\frac{1}{2}\partial_M\phi(X)\partial^M\phi(X) + g\delta^2(\vec{x}_\perp)\phi^2(X)\right).$$

Here $X^M = (x^{\mu}, x^i_{\perp}), \mu = 0..D - 1, i = 1, 2, i.e. x_{\perp}$ are coordinates transverse to the impurity.

- (a) What is the mass dimension of the coupling g? This is why I picked a codimension¹-two defect.
- (b) Find the equation of motion for ϕ . Where have you seen an equation like this before?
- (c) We will study the propagator for the field in a mixed representation:

$$G_k(x,y) \equiv \langle \phi(k,x)\phi(-k,y) \rangle = \int d^D z \ e^{\mathbf{i}k_\mu z^\mu} \left\langle \phi(z,x)\phi(0,y) \right\rangle$$

¹An object whose position requires specification of p coordinates has codimension p.

- *i.e.* we go to momentum space in the directions in which translation symmetry is preserved by the defect. Find and evaluate the diagrams contributing to $G_k(x, y)$ in terms of the free propagator $D_k(x, y) \equiv \langle \phi(k, x)\phi(-k, y) \rangle_{g=0}$. (We will not need the full form of $D_k(x, y)$.) Sum the series.

I found it convenient to do this problem in Euclidean spacetime, so G and D are Euclidean propagators.

(d) You should find that your answer to part 2c depends on $D_k(0,0)$, which is divergent. This divergence arises from the fact that we are treating the defect as infinitely thin, as a pointlike object – the δ^2 -function in the interaction involves arbitrarily short wavelengths. In general, as usual, we must really be agnostic about the short-distance structure of things. To reflect this, we introduce a regulator. For example, we can replace the fourier representation of $D_k(0,0)$ with the cutoff version

$$D_k(0,0;\Lambda) = \int_0^{\Lambda} d^2 q \frac{e^{\mathbf{i}q \cdot 0}}{k^2 + q^2}.$$
 (1)

Do the integral.

(e) Now we renormalize. We will let the *bare coupling g* (the one which appears in the Lagrangian, and in the series from part 2c) depend on the cutoff g = g(Λ). We wish to eliminate g(Λ) in our expressions in favor of some measurable quantity. To do this, we impose a renormalization condition: choose some reference scale μ, and demand that²

$$G_{\mu}(x,y) \stackrel{!}{=} D_{\mu}(x,y) - g(\mu)D_{\mu}(x,0)D_{\mu}(0,y).$$
⁽²⁾

This equation defines $g(\mu)$, which we regard as a physical quantity. Show that (2) is satisfied if we let the bare coupling be $g(\Lambda) = g(\mu)Z$, with

$$Z = \frac{1}{1 - \frac{g(\mu)}{4\pi} \ln\left(\frac{\Lambda^2}{\mu^2}\right)}$$

(f) Find the beta function for g,

$$\beta_g(g) \equiv \mu \frac{dg(\mu)}{d\mu},$$

and solve the resulting RG equation for $g(\mu)$ in terms of some initial condition $g(\mu_0)$. Does the coupling get weaker or stronger in the UV?

²Note that if we worked in real time, there would be an extra **i** in front of the second term on the RHS.

3. Scale invariance in QFT in D = 0 + 0. [I got this problem from Frederik Denef.]

A nice realization of QFT in 0 + 0 dimensions is the statistical mechanics of a collection of non-interacting particles. The canonical partition function for a single particle (moving in one dimension) is

$$Z = \int \mathrm{d}P dX e^{-\beta H} \propto \sqrt{T} Z_V(T) \tag{3}$$

with $H = \frac{P^2}{2} + V(X)$ and $T = 1/\beta$. The momentum integral is Gaussian and we can just do it. The partition function of N non-interacting indistinguishable particles is then $Z^N/N!$, which just multiplies the energy $U = T^2 \partial_T \log Z$ by a factor of N, so we don't miss anything by focussing on the single particle.

Let's consider the case

$$V(X) = aX^{2} + bX^{4} + cX^{6}$$
(4)

and figure out the important features of the temperature dependence of the thermodynamic quantities by scaling arguments.

- (a) Assuming $a \neq 0, b \neq 0, c \neq 0$, find the behavior of the thermal energy U and the heat capacity $C = \partial_T U$ in the limit $T \to 0$ and in the limit $T \to \infty$ using scaling arguments. Which parts of the potential determine the respective limiting behaviors?
- (b) If some of the couplings a, b, c vanish, the low or high temperature scaling behavior may change. For example, what is the heat capacity at low temperature when $a = 0, b \neq 0$?
- (c) When b is sufficiently large (and $a \neq 0, c \neq 0$), there will be an intermediate temperature regime over which the heat capacity is again constant, but different from the low- and high-temperature limits. What is this heat capacity?
- (d) In general, we can think of the change of C with T as a kind of classical renormalization group (RG) flow, interpolating between 'fixed points' where C becomes constant. In general, these fixed points correspond to potentials V(X) with a scaling symmetry $V(\lambda^{\Delta}X) = \lambda V(X)$ for some choice of scaling dimension Δ of X. What is the heat capacity for a fixed point with scaling dimension Δ for X?
- (e) Borrowing more language of the renormalization group, we can classify deformations $\delta V(X) = \epsilon X^m$ of a fixed point $V(X) \propto X^{2n}$ as irrelevant,

marginal, or relevant, depending on whether the deformation becomes dominant or negligible in the IR limit, *i.e.* in the limit of low T. Here are below ϵ can take on any value, not necessarily small. Restricting to deformations with an $X \to -X$ symmetry, what are the relevant and irrelevant deformations of $V(X) = X^{2n}$? (Note that a deformation $\delta V = \epsilon X^{2n}$ can be absorbed into a redefinition of X, which does not change the heat capacity.)

- (f) The *T*-dependence of correlation functions (here, expectation values of powers of *X*) at fixed points is also determined by the scaling properties. What is the *T*-dependence of $\langle X^k \rangle$ at a fixed point $V(X) = X^{2n}$?
- (g) Non-polynomial V(X) can be considered as well. For example, what is the heat capacity at small and large T for $V(X) = (1 + X^2)^{1/n}$?
- 4. Meson scattering. Consider again Yukawa theory with fermions, with

$$\mathcal{L} = \bar{\Psi} \left(\mathbf{i} \partial - m \right) \Psi + \frac{1}{2} \partial_{\mu} \phi \partial^{\mu} \phi - \frac{1}{2} M^2 \phi^2 + \mathcal{L}_{\text{int}}$$

and $\mathcal{L}_{int} = g \bar{\Psi} \Psi \phi$.

- (a) Consider the correction to the process $\phi\phi \to \phi\phi$ coming from a fermion loop. What counterterm is required to renormalize this interaction? (You don't need to actually do the integral for this problem.)
- (b) Do you need a cutoff-dependent counterterm of the form $\delta_3 \phi^3$ in this theory?
- 5. Electron-photon scattering at low energy. [This is an optional bonus problem for those of you who wish to experience some of the glory of tree-level QED.] Consider the process $e\gamma \rightarrow e\gamma$ in QED at leading order.
 - (a) Draw and evaluate the two diagrams.
 - (b) Find $\frac{1}{4} \sum_{\text{spins.polarizations}} |\mathcal{M}|^2$.
 - (c) Construct the two-body final-state phase space measure in the limit where the photon frequency is $\omega \ll m$ (the electron mass), in the rest frame of the electron. I suggest the following kinematical variables:

$$p_1 = (\omega, 0, 0, \omega), p_2 = (m, 0, 0, 0), p_4 = (\omega', \omega' \sin \theta, 0, \omega' \cos \theta), p_3 = p_1 + p_2 - p_4 = (E', p')$$

for the incoming photon, incoming electron, outgoing photon and outgoing electron respectively.

(d) Find the differential cross section $\frac{d\sigma}{d\cos\theta}$ as a function of ω, θ, m . (The expression can be prettified by using the on-shell condition $p_3^2 = m^2$ to relate ω' to ω, θ . It is named after Klein and Nishina.) Compare to experiment.

(e) Show that the limit $E \ll m$ gives the (Thomson) scattering cross section for classical electromagnetic radiation from a free electron.