
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2022
Assignment 2

Due 11:59pm Monday, January 17, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. Brain-warmer.

Use the Clifford algebra to show that

γµ
(
x/p+m

)
γµ = −2x/p+ 4m

where as usual /p ≡ pµγµ. This identity will be useful in the numerator of the

electron self-energy.

2. An example of renormalization in classical physics.

Consider a classical scalar field in D + 2 spacetime dimensions coupled to an

impurity (or defect or brane) in D dimensions, located at X = (xµ, 0, 0). Suppose

the field has a self-interaction which is localized on the defect. For definiteness

and calculability, we’ll consider the simple (quadratic) action

S[φ] =

∫
dD+2X

(
1

2
∂Mφ(X)∂Mφ(X) + gδ2(~x⊥)φ2(X)

)
.

Here XM = (xµ, xi⊥), µ = 0..D− 1, i = 1, 2, i.e. x⊥ are coordinates transverse to

the impurity.

(a) What is the mass dimension of the coupling g? This is why I picked a

codimension1-two defect.

(b) Find the equation of motion for φ. Where have you seen an equation like

this before?

(c) We will study the propagator for the field in a mixed representation:

Gk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉 =

∫
dDz eikµz

µ 〈φ(z, x)φ(0, y)〉

1An object whose position requires specification of p coordinates has codimension p.
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– i.e. we go to momentum space in the directions in which translation sym-

metry is preserved by the defect. Find and evaluate the diagrams contribut-

ing toGk(x, y) in terms of the free propagatorDk(x, y) ≡ 〈φ(k, x)φ(−k, y)〉g=0.

(We will not need the full form of Dk(x, y).) Sum the series.

I found it convenient to do this problem in Euclidean spacetime, so G and

D are Euclidean propagators.

(d) You should find that your answer to part 2c depends on Dk(0, 0), which

is divergent. This divergence arises from the fact that we are treating the

defect as infinitely thin, as a pointlike object – the δ2-function in the in-

teraction involves arbitrarily short wavelengths. In general, as usual, we

must really be agnostic about the short-distance structure of things. To re-

flect this, we introduce a regulator. For example, we can replace the fourier

representation of Dk(0, 0) with the cutoff version

Dk(0, 0; Λ) =

∫ Λ

0

d̄2q
eiq·0

k2 + q2
. (1)

Do the integral.

(e) Now we renormalize. We will let the bare coupling g (the one which appears

in the Lagrangian, and in the series from part 2c) depend on the cutoff

g = g(Λ). We wish to eliminate g(Λ) in our expressions in favor of some

measurable quantity. To do this, we impose a renormalization condition:

choose some reference scale µ, and demand that2

Gµ(x, y)
!

= Dµ(x, y)− g(µ)Dµ(x, 0)Dµ(0, y). (2)

This equation defines g(µ), which we regard as a physical quantity. Show

that (2) is satisfied if we let the bare coupling be g(Λ) = g(µ)Z, with

Z =
1

1− g(µ)
4π

ln
(

Λ2

µ2

) .
(f) Find the beta function for g,

βg(g) ≡ µ
dg(µ)

dµ
,

and solve the resulting RG equation for g(µ) in terms of some initial condi-

tion g(µ0). Does the coupling get weaker or stronger in the UV?

2Note that if we worked in real time, there would be an extra i in front of the second term on the

RHS.
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3. Scale invariance in QFT in D = 0 + 0. [I got this problem from Frederik

Denef.]

A nice realization of QFT in 0 + 0 dimensions is the statistical mechanics of

a collection of non-interacting particles. The canonical partition function for a

single particle (moving in one dimension) is

Z =

∫
d̄PdXe−βH ∝

√
TZV (T ) (3)

with H = P 2

2
+ V (X) and T = 1/β. The momentum integral is Gaussian and

we can just do it. The partition function of N non-interacting indistinguishable

particles is then ZN/N !, which just multiplies the energy U = T 2∂T logZ by a

factor of N , so we don’t miss anything by focussing on the single particle.

Let’s consider the case

V (X) = aX2 + bX4 + cX6 (4)

and figure out the important features of the temperature dependence of the ther-

modynamic quantities by scaling arguments.

(a) Assuming a 6= 0, b 6= 0, c 6= 0, find the behavior of the thermal energy U and

the heat capacity C = ∂TU in the limit T → 0 and in the limit T →∞ using

scaling arguments. Which parts of the potential determine the respective

limiting behaviors?

(b) If some of the couplings a, b, c vanish, the low or high temperature scal-

ing behavior may change. For example, what is the heat capacity at low

temperature when a = 0, b 6= 0?

(c) When b is sufficiently large (and a 6= 0, c 6= 0), there will be an intermediate

temperature regime over which the heat capacity is again constant, but

different from the low- and high-temperature limits. What is this heat

capacity?

(d) In general, we can think of the change of C with T as a kind of classical

renormalization group (RG) flow, interpolating between ‘fixed points’ where

C becomes constant. In general, these fixed points correspond to potentials

V (X) with a scaling symmetry V (λ∆X) = λV (X) for some choice of scaling

dimension ∆ of X. What is the heat capacity for a fixed point with scaling

dimension ∆ for X?

(e) Borrowing more language of the renormalization group, we can classify

deformations δV (X) = εXm of a fixed point V (X) ∝ X2n as irrelevant,
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marginal, or relevant, depending on whether the deformation becomes dom-

inant or negligible in the IR limit, i.e. in the limit of low T . Here are below

ε can take on any value, not necessarily small. Restricting to deformations

with an X → −X symmetry, what are the relevant and irrelevant defor-

mations of V (X) = X2n? (Note that a deformation δV = εX2n can be

absorbed into a redefinition of X, which does not change the heat capacity.)

(f) The T -dependence of correlation functions (here, expectation values of pow-

ers of X) at fixed points is also determined by the scaling properties. What

is the T -dependence of
〈
Xk
〉

at a fixed point V (X) = X2n?

(g) Non-polynomial V (X) can be considered as well. For example, what is the

heat capacity at small and large T for V (X) = (1 +X2)1/n?

4. Meson scattering. Consider again Yukawa theory with fermions, with

L = Ψ̄
(
i/∂ −m

)
Ψ +

1

2
∂µφ∂

µφ− 1

2
M2φ2 + Lint

and Lint = gΨ̄Ψφ.

(a) Consider the correction to the process φφ→ φφ coming from a fermion loop.

What counterterm is required to renormalize this interaction? (You don’t

need to actually do the integral for this problem.)

(b) Do you need a cutoff-dependent counterterm of the form δ3φ
3 in this theory?

5. Electron-photon scattering at low energy. [This is an optional bonus prob-

lem for those of you who wish to experience some of the glory of tree-level QED.]

Consider the process eγ → eγ in QED at leading order.

(a) Draw and evaluate the two diagrams.

(b) Find 1
4

∑
spins,polarizations |M|2.

(c) Construct the two-body final-state phase space measure in the limit where

the photon frequency is ω � m (the electron mass), in the rest frame of the

electron. I suggest the following kinematical variables:

p1 = (ω, 0, 0, ω), p2 = (m, 0, 0, 0), p4 = (ω′, ω′ sin θ, 0, ω′ cos θ), p3 = p1+p2−p4 = (E ′, p′)

for the incoming photon, incoming electron, outgoing photon and outgoing

electron respectively.

(d) Find the differential cross section dσ
d cos θ

as a function of ω, θ,m. (The ex-

pression can be prettified by using the on-shell condition p2
3 = m2 to relate

ω′ to ω, θ. It is named after Klein and Nishina.) Compare to experiment.
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(e) Show that the limit E � m gives the (Thomson) scattering cross section

for classical electromagnetic radiation from a free electron.
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