
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2022
Assignment 3 – Solutions

Due 11:59pm Monday, January 24, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. Brain-warmer.

Prove the Gordon identities

ū2 (qνσµν)u1 = iū2 ((p1 + p2)µ − (m1 +m2)γµ)u1

and

ū2 ((p1 + p2)νσµν)u1 = iū2 ((p2 − p1)µ − (m2 −m1)γµ)u1

where q ≡ p2 − p1 and /p1
u1 = m1u1, ū2/p2

= m2ū2, using the definitions and the

Clifford algebra.

2. Pauli-Villars practice.

Consider a field theory of two scalar fields with

L = −1

2
φ2φ− 1

2
m2φ2 − 1

2
Φ2Φ− 1

2
M2Φ2 − gφΦ2 + counterterms.

Compute the one-loop contribution to the self-energy of Φ. Use a Pauli-Villars

regulator – introduce a second copy of the φ field of mass Λ with the wrong-sign

propagator.

ΣΦ(p) =

∫
d̄Dk

i

k2 −m2

i

(k + p)2 −M2
(−ig)2 (1)

= g2

∫ 1

0

dx

∫
d̄Dk

1

((1− x)(k2 −m2) + x((k + p)2 −M2))2 (2)

= g2

∫ 1

0

dx

∫
d̄D`

(`2 −∆ + iε)2
, ` = k − px,∆ = xM2 + (1− x)m2 − p2x(1− x)

(3)

≡ g2

∫ 1

0

dxJ (∆(m)) (4)
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The Pauli-Villars regulator replaces the φ propagator by

i

p2 −m2
 

i

p2 −m2
− i

p2 − Λ2

so that the self energy is replaced by

ΣΦ(p) = g2

∫ 1

0

dx (J (∆(m))− J (∆(Λ))) (5)

=
g2

8π2

∫ 1

0

dx log
∆(Λ2)

∆(m2)
(6)

=
g2

8π2

∫ 1

0

dx log
∆(Λ2)

∆(m2)
(7)

Λ�everyone
=

g2

8π2

∫ 1

0

dx log

(
xΛ2

xM2 + (1− x)m2 − p2x(1− x)

)
(8)

Actually there is also second diagram, where the fermion emits a single scalar

which ends at a fermion bubble:

−iΣtadpole
Φ (p) = (−ig)2

∫
d̄4k

i

k2 −M2

i

−m2
.

This is independent of the external momentum, and so only contributes to the

mass renormalization. A complication that arises here is that the loop contains

only a fermion propagator, so our PV regulator involving only a heavy scalar

above will not regularize this divergence. We must also add a heavy fermion

ghost field. (Such a step is also required to regulate the corrections to the scalar

propagator from a fermion bubble.) I’m going to ignore this diagram below.

Determine the counterterms required to impose that the Φ propagator has a

pole at p2 = M2 with residue 1.

To do this, expand (8) about p2 = M2:

ΣΦ(p) =
g2

8π2

∫ 1

0

dx log
xΛ2

M2(1− x)2 +m2x
+ (p2 −M2)

g2

8π2

∫ 1

0

dx
x(1− x)

M2(1− x)2 +m2x

(9)

≡ S1 + (p2 −M2)S2 (10)

and do the x integrals. The mass correction depends on the cutoff like log Λ, but

δZ is independent of the cutoff. The actual expressions (which Mathematica can

tell you if you are patient enough) are not very illuminating and I don’t want to

type them, but it’s worth noticing that they are singular when m = 2M . Why?

When m = 2M the intermediate state can be on shell.
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The total contribution to Σ, including the counterterms Lct = −δZ 1
2
(∂φ)2 +

δM2
1
2
Φ2 (note my silly sign convention) is

0 + (p2 −M2)0 +O(p2 −M2)2 !
= Σ(p)− δM2 − p2δZ (11)

= S1 + (p2 −M2)S2 − δM2 − p2δZ +O(p2 −M2)2

(12)

= S1 −M2S2 − δM2 + p2(S2 − δZ) +O(p2 −M2)2.

(13)

We conclude that we need to set

δ2
M = S1 −M2S2, δZ = S2

to satisfy the stated renormalization conditions. Notice that in this process, we

not only remove the cutoff dependence, but we also determine the finite parts of

the counterterms.

3. Bosons have worse UV behavior than fermions.

Consider the Yukawa theory

S[φ, ψ] = −
∫
dDx

(
1

2
φ (2 +mφ)φ+ ψ̄ (−/∂ +mψ)ψ + yφψ̄ψ +

g

4!
φ4

)
+counterterms.

(a) Show that the superficial degree of divergence for a diagram A with BE

external scalars and FE external fermions is

DA = D + (D − 4)

(
Vg +

1

2
Vy

)
+BE

(
2−D

2

)
+ FE

(
1−D

2

)
(14)

where Vg and vy are the number of φ4 and φψ̄ψ vertices respectively.

All the discussion below is about one loop diagrams.

(b) Draw the diagrams contributing to the self energy of both the scalar and

the spinor in the Yukawa theory.

(c) Find the superficial degree of divergence for the scalar self-energy amplitude

and the spinor self-energy amplitude.

(d) In the case of D = 3 + 1 spacetime dimensions, show that (with a cutoff

on the Euclidean momenta) the spinor self-energy is actually only loga-

rithmically divergent. (This type of thing is one reason for the adjective

‘superficial’.)
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Hint: the amplitude can be parametrized as follows: if the external momen-

tum is pµ, it is

M(p) = A(p2)/p+B(p2).

Show that B(p2) vanishes when mψ = 0.

See Zee, page 180. In four dimensions, the scalar self-energy has D = 2 and

indeed depends quadratically on the cutoff. The fermion self-energy has D = 1,

but the would-be leading divergence of the fermion self-energy is an integral with

an odd integrand and therefore vanishes, leaving behind a mere log.

A better argument for this conclusion follows from the chiral transformation

Ψ → eiγ
5αΨ, which becomes a symmetry when the fermion mass is zero. This

means that the correction to the fermion mass B(0) must be proportional to

the mass itself (it must go to zero when the mass goes to zero, and must be

analytic in the mass for some reason I am unable to summon at the moment).

Combining this statement with the dimensional analysis above, we conclude that

there cannot be linear dependence on the cutoff.

4. Dimension-dependence of dimensions of couplings.

(a) In what number of space dimensions does a four-fermion interaction such as

Gψ̄ψψ̄ψ have a chance to be renormalizable? Assume Lorentz invariance.

[optional] Generalize the formula (14) for DA to include a number VG of

four-fermion vertices.

I find

DA = D+ (D− 4)

(
Vg +

1

2
Vy

)
+ (D− 2)VG +BE

(
2−D

2

)
+FE

(
1−D

2

)
Therefore the four-fermion interaction is scale invariant in D = 2 spacetime

dimensions.

(b) If we violate Lorentz invariance the story changes. Consider a non-relativistic

theory with kinetic terms of the form
∫
dtddx

(
ψ† (i∂t −D∇2)ψ

)
. (Here D

is a dimensionful constant. In a relativistic theory we relate dimensions of

time and space by setting the speed of light to one; here, there is no such

thing, and we can choose units to set D to one.) For what number of space

dimensions might the four-fermion coupling be renormalizable?

You actually already know the answer to this from our study in the first

lecture of the delta function potential. The ψ̄ψψ̄ψ is exactly such a contact

interaction between two particles. So it is marginal when d = 2. Alterna-

tively, you can count inverse-length dimensions of the time-derivative term
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to learn that [ψ] = d/2, and of the ~∇2 term to learn that [t] = −2, i.e. we

must scale t twice as fast as space to make the free theory scale invariant.

Then 0 = [G
∫
dtddxψ̄ψψ̄ψ] = [G]− 2− d+ 2d gives [G] = 2− d. If d > 2 it

is an irrelevant perturbation of the free theory.

(c) In the previous example, the scale transformation preserving the kinetic

terms acted by t→ λ2t, x→ λx. More generally, the relative scaling of space

and time is called the dynamical exponent z (z = 2 in the previous example).

Suppose that the kinetic terms are first order in time and quadratic in the

fields. Ignoring difficulties of writing local quadratic spatial kinetic terms,

what is the relationship between d and z which gives scale invariant quartic

interactions? What if the kinetic terms are second order in time (as for

scalar fields)?

To get dynamical exponent z with first-order-in-time derivatives, we’d need

a kinetic term like

S0 =

∫
dtddxψ̄ (i∂t −∇z)ψ.

So [ψ] = −d/2 still, but [t] = −z. Therefore 0 = [G
∫
dtddxψ̄ψψ̄ψ] =

[G]− z − d+ 2d gives [G] = z − d and it is scale invariant if d = z.

With second-order-in-time derivatives, we have

S0 =

∫
dtddxφ

(
∂2
t −∇2z

)
φ

so 0 = −z − d + 2z + 2[φ] says [φ] = (d − z)/2, and so 0 = [g
∫
dtddxφ4] =

−z − d+ 4(d− z) + [g] says [g] = 3z − d). It is classically scale invariant if

d = 3z.

5. Scale invariance in QFT in D = 0 + 0, part 2. [I got this problem from

Frederik Denef.]

The story is more interesting if there is more than one field, i.e. if we consider the

statistical mechanics of a particle moving in more than one dimension. Consider

the example of two degrees of freedom with Hamiltonian

H =
1

2
P 2
X +

1

2
P 2
Y + V (X, Y ), V (X, Y ) = aX4 + bY 8 (15)

for some nonzero constants a, b.

(a) This potential again has a scaling symmetry V (λ1/4X,λ1/8Y ) = λV (X, Y ).

As a result, the model describes a fixed point, with constant heat capacity.

Find the heat capacity.
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Z =

∫
d2Pe−P

2/T

∫
dXdY e−V (X,Y )/T ∼ TT 1/4+1/8

∫
dxdye−V (x,y) ∼ T 11/8

where x ≡ T−1/4X, y = T−1/8Y . We found on the previous problem set that

if Z ∼ Tα then CV = α, so here CV = 11/8.

(b) Restricting to deformations with independent symmetries under X → −X
and Y → −Y , and using the basic scaling properties of the deformations

under the above scaling symmetry, what are the relevant, marginal and

irrelevant deformations? (Note that in this case there are true marginal

deformations that cannot be absorbed into the normalization of X and Y .)

The question of whether δV is relevant is whether it changes the low-

temperature physics compared to the fixed point behavior. In the position

integral, we have∫
dXdY e−V0(X,Y )/T+δV (X,Y )/T = T 3/8

∫
dxdye−V0(x,y)+δV (T 1/4x,T 1/8y)/T .

For δV = X2mY 2n, the extra term in the exponent is

δV (T 1/4x, T 1/8y)/T = T−1T 2m/4x2mT 2n/8y2n = T
2m+n−4

4 x2my2n.

So the condition for this to be relevant is that the power of T is negative

2m+ n < 4.

There are now relevant interactions with 2m + n = 4; these cannot be

absorbed into field redefinitions if m and n are both nonzero. (As a check

note that the terms in the fixed-point potential are counted as marginal;

changes in these can be absorbed by field redefinitions.)

(c) How does
〈
XkY l

〉
depend on T at a fixed point satisfying V (λ∆XX,λ∆Y Y )?

〈
XkY l

〉
=

∫
dXdY XkY le−V (X,Y )/T

ZV
=
T∆X(1+k)+∆Y (1+l)

∫
dxdyxkyle−V (x,y)

T∆X+∆Y
∝ T∆Xk+∆Y l.

A generic relevant deformation of (15) will flow to a Gaussian fixed point V (X, Y ) ∼
X2 + Y 2 in the IR. Some other, more fine-tuned deformations will flow to other

fixed points. For example, δV (X, Y ) = εY 4 will flow to V (X, Y ) = X4 +Y 4. But

something more interesting happens for δV (X, Y ) = εX2Y 2. We’ll study this

more on the next homework.
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