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Physics 215B QFT Winter 2022
Assignment 4 – Solutions

Due 11:59pm Monday, January 31, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. Brain-warmer. Check that (∆T )µρ ≡ δµρ −
qµqρ
q2

is a projector onto momenta

transverse to qρ.

This requires showing both that ∆q = 0 and that ∆2 = ∆.

2. Tadpole diagrams.

(a) Why don’t we worry about the following diagram as a correction

to the electron self-energy in QED?

It has to vanish by Lorentz symmetry: the object would be a source jµ

for the electromagnetic field in the vacuum. At one loop, we can check that∫
d̄4ktrγµ /k+m

k2−m2 = 0 by trγµ = 0 and Lorentz symmetry,
∫ d

4kkµf(k2) = 0.

The one-point function for the photon also has to vanish by charge-conjugation

symmetry (in fact any odd-point function of the photon does for the same

reason; this is called Furry’s theorem).

More generally, a tadpole diagram – a diagram with a single field line coming

out of it – represents a source for the field. When we developed our Feynman

rules, we expanded around a minimum of the potential for the field, and

this is why there is no one-point vertex in the Feynman rules. A tadpole

diagram is saying that radiative effects are producing a shift in the minimum

of the potential. The (quadratic part of the) action wants to change to∫
((∂A)2 − m2

γA
2 + Aj). The equations of motion for the zero-momentum

field tell us that the minimum is at A = j/m2
γ. In the case of a massless

field, the shift is arbitrarily large (in this linear approximation). This is the

source of the IR divergence in the tadpole diagram as mγ → 0. In QED,

this is moot because j = 0.
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For the remainder of the problem, we consider φ3 theory with a (small) mass:

S =

∫
dDx

(
1

2
(∂φ)2 − 1

2
m2φ2 − g

3!
φ3

)
.

(b) Notice that unlike φ4 theory (or QED), there is no symmetry that forbids

a one-point function for the scalar. Why don’t we lose generality by not

adding a term linear in φ to the Lagrangian?

We can shift it away by a field redefinition, φ → φ − a. It is convenient

to choose a to make the linear term vanish, since then the solution to the

equations of motion has φ0 = 0.

(c) Now think about the following contribution to the scalar self-energy:

Show that in the limit m→ 0 there is an IR divergence. By thinking about

the significance for the scalar potential of this part of the diagram explain

the meaning of this divergence.

The object is a one-point function for the scalar. As explained in the

answer to the previous part of the problem, the presence of such a one-

point function (Veff 3 vφ, with v ∝ g) means we are doing perturbation

theory about a configuration which is not a solution to the equations of

motion at order g. The correct solution to the equations of motion is φ0

with 0 = m2φ0 +v so φ0 = −v/m2, which diverges when m→ 0. This is the

origin of the IR divergence – the field theory is trying to find its minimum

which, when m→ 0, is arbitrarily far away in field space.

3. Symmetry is attractive. Consider a field theory in D = 3 + 1 with two scalar

fields with the same mass which interact via the interaction

V = − g
4!

(
φ4

1 + φ4
2

)
− 2λ

4!
φ2

1φ
2
2.

(a) Show that when λ = g the model possesses an O(2) symmetry.

At this special point, the potential is (φ2
1 + φ2

2)2, which depends only on the

distance from the origin of the field space.

(b) Will you need a counterterm of the form φ1φ2 or φ12φ2 (for general g, λ)?

If not, why not?

2



A very important point: such terms can’t be generated because they violate

the Z2 symmetry which takes (φ1, φ2) → (−φ1, φ2). In general, radiative

effects (i.e. loops) will not violate symmetries of the bare action. Exceptions

to this statement are called anomalies; this only happens when no regulator

preserves the symmetry in question.

(c) Renormalize the theory to one loop order by regularizing (for example with a

euclidean momentum cutoff or Pauli Villars), adding the necessary countert-

erms, and imposing a renormalization condition on the propagators (con-

sider the case where the scalars are both massless) and 2 → 2 scattering

amplitudes at some values of the kinematical variables s0, t0, u0. Feel free

to re-use our results from φ4 theory where appropriate.

I’ll use a hard euclidean momentum cutoff since then we can reuse our results

from φ4 theory. To save typing let me define L(x) ≡ 1
32π2 log x. Every loop

integral we will encounter is the same as in the pure massless φ4 theory that

we did in lecture.

The symmetry that interchanges φ1 ↔ φ2 guarantees that their self-couplings

g (and the masses) stay equal (using the same principle as above). This

means we have only three counterterms to determine altogether: δm2 and

two four-point counterterms (δg, δλ). That is, we have to impose two renor-

malization conditions on the four-point functions.

First an annoying point: with the given normalization, the 1122 vertex is

actually −iλ/3.

The self-energy for φ1 is

−iΣ(p2) = +.. = −i(g+λ/3)cΛ2+O(g, λ)2

where c is a numerical constant that I can’t remember right now and which

we don’t need. To put the pole at p2 = m2
P = 0, we need the bare mass to

be

m2(Λ) = −Σ(p2 = 0) = (g + λ/4)cΛ2.

As in φ4 theory, there is no wavefunction renormalization at one loop because

Σ is independent of p2.

There are three different 2 → 2 scattering processes to consider: 11 →
11, 11 → 22, 12 → 12. (The corrections to 22 → 22 are the same as those

for 11→ 11, and similiarly 22→ 11 is the same as 11→ 22, by the exchange
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symmetry.) Then using the notation we have

M11←11 = −g + (g2 +

(
λ

3

)2

)(L(s/Λ2) + L(t/Λ2) + L(u/Λ2)) + δg (1)

(2)

The λ2 term involves φ2 running in the loop. (Note that I am writing

iM = −ig + (−ig)2... and dividing the BHS by i.) Beware the symmetry

factor of 1
2

in each loop diagram.

M22←11 = −λ
3

+
λ

3
g2L(s/Λ2) +

(
λ

3

)2 (
2L(t/Λ2) + 2L(u/Λ2)

)
+ δλ (3)

(4)

where the 2 in the s-channel term is from the fact that either φ1 or φ2 can

run in the loop. The last two diagrams have a different symmetry factor

from the others, since we can’t exchange the two propagators in the loop –

so they get an extra factor of 2.

M12←12 = −λ
3

+

(
λ

3

)2 (
2L(s/Λ2) + 2L(u/Λ2)

)
+ 2

λ

3
gL(t/Λ2) + δλ (5)

(6)

Using the renormalization conditions M11←11(s0 = t0 = u0) = −gP and

M22←11(s0 = t0 = u0) = −λP
3

we find

λ(Λ) ≡ λ+ δλ = λP + λP2gPL+ 4
λ2
P

3
L+O(λP , gP )2 (7)

g(Λ) ≡ g + δg = gP +

(
g2
P +

(
λP
3

)2
)

3L+O(λP , gP )2 (8)

where L ≡ L(s0/Λ
2). We’ve solved for the couplings perturbatively, to

second order in both, which means we ignored the difference between e.g. g

and gP in the quadratic term, as we must. From now on I will drop the P

subscripts on the physical coupling.
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Notice that we would get the same answer if we defined λP by fixing a value

of M12←12 instead. This is because of crossing symmetry.

(d) Consider the limit of low energies, i.e. when s0, t0, u0 � Λ2 where Λ is the

cutoff scale. Tune the location of the poles in both propagators to p2 = 0.

Show that the coupling goes to the O(2)-symmetric value if it starts nearby

(nearby means λ/g < 3).

A nice trick for doing this is to compute the beta functions.

βg ≡ 32π2Λ2∂Λ2g(Λ) = 3

(
g2 +

(
λ

3

)2
)
, βλ ≡ 32π2Λ2∂Λ2λ(Λ) =

(
2λg + 4

λ2

3

)
where I’ve pulled out a factor of 32π2 in the definition of β for convenience

– it only affects how fast the flow happens. A useful check is that if we

set λ = 0, we reproduce the beta function for φ4 theory, βg = +3g2 (the 3

comes from the 3 different channels).

To look at the relative flow of g and λ let’s compute

βλ/g ≡ 8π2Λ2∂Λ2

λ

g
=

1

g2
(gβλ − λβg) ∝

(
−λ

3

3
− 5

3
gλ2 + 2g2λ

)
=

1

3
λ(λ−g)(λ+6g).

This looks like this:

with the convention I’m using, positive β means that as we increase Λ, the

coupling decreases. This means that the couplings approach the point g = λ

as Λ→∞ fixing gP , λP . This is the case as long as we start with λ/g < 3.

4. Bremsstrahlung. Show that the number of photons per decade of wavenumber

produced by the sudden acceleration of a charge is (in the relativistic limit −q2 �
m2)

fIR(q2) = 2
α

π
ln

(
−q2

m2

)
,

where qµ = p′µ− pµ is the change of momentum and m is the mass of the charge.
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This is explained well on pages 177-182 of Peskin. The energy comes out to

U =

∫
d̄3k

2α

π
ln

(
−q2

m2

)
= 2

∫
d̄3kkNk

where Nk is the number density of photons of momentum k of each polarization,

and the RHS used the fact that each photon of momentum k carries energy k.

(The 2 comes from two polarizations for each momentum) Then the number of

photons is

N =

∫
dk

k

α

π
ln

(
−q2

m2

)
=

∫
d log k

α

π
ln

(
−q2

m2

)
and hence 2α

π
ln
(
−q2
m2

)
is the total number of photons per decade of wavenumber.

(Note that the integral over k here actually diverges; this is an artifact of the

approximation that the momentum change is instantaneous.)

5. Scale invariance in QFT in D = 0 + 0, part 3. [I got this problem from

Frederik Denef and it is optional but strongly encouraged.]

We continue our study of QFT in D = 0 + 0 with two fields:

Z =

∫
dPXdPY dXdY e

−H/T .

Let’s start by considering again

H =
1

2
P 2
X +

1

2
P 2
Y + V (X, Y ), V (X, Y ) = aX4 + bY 8 (9)

for some nonzero constants a, b.

A generic relevant deformation of (9) will flow to a Gaussian fixed point V (X, Y ) ∼
X2 + Y 2 in the IR. Some other, more fine-tuned deformations will flow to other

fixed points. For example, δV (X, Y ) = εY 4 will flow to V (X, Y ) = X4 +Y 4. But

something more interesting happens for δV (X, Y ) = εX2Y 2. This deformation is

a relevant perturbation of (9) in the sense that δV (λ1/4X,λ1/8Y ) = λκV (X, Y )

with κ = 3/4 < 1. But it is not true that the model simply flows to a fixed point

with V ∝ X2Y 2 in the IR. That’s because the model with such a potential has

a divergent partition function:
∫∞
−∞ dX

∫∞
−∞ dY e

−εX2Y 2/T ∝
√

T
ε

∫
dX
|X| = ∞. We

cannot throw away the higher-order terms because they regulate the large-X and

large-Y behavior of the integral. Thus, in this model, the UV does not completely

decouple from the IR. As a consequence, naive scaling arguments break down,

and the partition function develops “anomalous” logarithmic dependence on T

for small T .
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(a) Compute the partition function for the model (9) deformed by δV (X, Y ) =

εX2Y 2 analytically using Mathematica or some other symbolic software.

This will give a horrible mess of hypergeometric functions. Expand it at

small T and you should find something of the form

Z = Z0T
c log

Λ

T
(10)

up to corrections suppressed by positive powers of
√
T/Λ. Find the con-

stants Z0, c,Λ. The over all normalization Z0 does not mean anything in

classical statistical mechanics.

Mathematica will tell you that the integral

ZV =

∫ ∞
−∞

dXdY e−(aX4+bY 8+εX2Y 2)/T

is

This function looks like:

The series expansion has a bit that goes like
√
T log T plus corrections of

order
√
T , and a bit that goes like Te

ε4

64a2bT . The latter is a very weird

function. If it were e−1/T with a negative coefficient in the exponent, it

would be easy to say that this is non-perturbatively small. With a positive

but small coefficient (i.e. for small ε) it is essentially indistinguishable from

T , as long as T > 0. Therefore it is subleading. If you plot each of these

bits individually, you can see that the former is the part that matters.
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(b) Using (10), compute the dimensionless quantities U/T and C. (Without

the logarithmic dependence on T , these would be equal.) Check that in

the strict limit T → 0, you get the values for U/T and C that you would

have guessed based on naive scaling arguments for V ∝ X2Y 2. Note that a

logarithm varies more slowly than the T 1/2 corrections that we threw away.

So Z = Z0T
1+ 1

2 log T/Λ (don’t forget the contribution from the two momen-

tum integrals) and therefore

U/T = T∂T logZ =
3

2
+

1

log T/Λ
(11)

while

C = ∂TU =
3

2
+

1

log T/Λ
− 1

log2 T/Λ
. (12)

The naive answer is Z ∼ T 1+1/2, using ZV
?
=
∫
dXdY e−X

2Y 2ε/T =
√
T/ε

∫
dxdye−x

2y2

by scaling; this would work if the integral were actually well-defined without

introducing some other scale. This gives U/T = C = 3
2
, and indeed both of

the above functions do approach 3
2

as T → 0. The correct curves look like

(c) To what extent does the IR physics depend on the UV completion of the V ∝
X2Y 2 model? We could have started with V = aX8 + bY 8 + εX2Y 2 instead.

This model would have different high-temperature physics. Redo part for

this potential. You’ll find an equally-horrendous, but different combination

of hypergeometric functions. Which of the parameters Z0, c,Λ are the same?

Only c is universal.

(d) The result of the previous part remains true for any other UV completion of

the V ∝ X2Y 2 model, as long as δV = εX2Y 2 remains a relevant deforma-

tion. In fact, we could equally well just take V = εX2Y 2 and impose a hard

cutoff on the X and Y integrals at some fixed values |X| ≤ X0, |Y | ≤ Y0
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(this is like V = Xn + Y n with n → ∞). Check that this again reduces to

(10).

The answer is simpler:

ZL
V ≡

∫ L

−L
dX

∫ L

−L
dY e−εX

2Y 2/T = 4L2HypergeometricPFQ

[{
1

2
,
1

2

}
,

{
3

2
,
3

2

}
,−L

4ε

T

]
.

This has the simpler low-temperature expansion:

ZL
V ∼ −

√
πT

ε
log

T

εL4γ
+O(T 3/2) + e−L

4ε/TO(T 2)

where γ is some irrelevant constant, and now the other term really is non-

perturbatively small.

(e) In view of this apparent universality of (10) at low T , it is desirable to

have a way of deriving it without having to take the detour involving the

horrendous hypergeometric functions. Here is one way. We use the hard

cutoff |X| ≤ L, |Y | ≤ L, so that the position-space factor is

ZV (T, L) =

∫ L

−L
dX

∫ L

−L
dY e−X

2Y 2/T (13)

where we’ve set ε = 1 by a choice of temperature units. A rescaling of

the integration variables (X, Y ) → (T 1/4X,T 1/4Y ) shows that ZV (T, L) =√
TF (T−1/4L) for some function F of one variable. To find F , compute

L∂LZV directly from (13). By another suitable rescaling, show that L∂LZ is

finite and easily computable for L4/T →∞. Infer from this the dependence

on the cutoff L in the regime T � L4 and thus the function F in this regime.

This reproduces (10).

ZV (T, L) = 4

∫ L

0

dX

∫ L

0

dY e−X
2Y 2/T =

√
TF (T−1/4L).

By the fundamental theorem of calculus,

L∂LZV = 4L

∫ L

0

dY e−L
2Y 2/T × 2

where the last factor of two comes from the place where the L derivative

hits the upper limit of the Y integral. By scaling y = L2Y 2/T (so dY =

dy
√
T/L) this is

L∂LZV = 8L

√
T

L

∫ L2T−1/2

0

dye−y
2

= 8
√
T

(√
π

2
+O(e−L

4/T )

)
.
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Using x∂x|T = L∂L, we have

x∂xF (x) = T−1/2L∂LZV = 4
√
π +O(e−L

4/T ).

The solution of this ODE is F (x) = c+ 4
√
π log x, and therefore

ZV (T, L) =

√
T

ε
(c+

√
π log

εL4

T
).

At the last step, I restored the ε by dimensional analysis. Since we don’t

care about the overall factor, we can get rid of the
√
π, and this is what we

had above.

(f) We conclude that even when some kind of UV completion is required to

give finite answers, the observable low-energy physics remains essentially

independent of the UV completion. The infinite number of possible UV

completions all flow in the IR to a partition function of the same form

(10), with the details of the UV completion all lumped into a single scale

parameter Λ. In fact, in the absence of other reference scales that can be

used to fix a unit of temperature, the parameter Λ does not really label

physically distinct models, since we can always choose units with Λ = 1.

Equivalently, only dimensionless quantities (and relations between them)

are physically meaningful. Examples of such dimensionless quantities are C

and u ≡ U/T . Show that C and u obey a universal relation C = f(u) with

f(u) independent of T and Λ, and thus independent of the UV completion

of the X2Y 2 model. In the same spirit, show that the function g(u) in the

flow equation T∂Tu = g(u) is independent of the UV completion.

A brute force way to do this is just to compute them both from Z =

Z0T log T/Λ and find the answers in (11) and (12). Letting L ≡ 1
log T/Λ

,

we have

u =
3

2
+ L,C =

3

2
+ L− L2

so L = u− 3
2

and

C = −u2 + 3u− 3

2
≡ f(u).

Similarly,

T∂Tu = − 1

log T/Λ
= −L2 = −

(
u− 3

2

)2

≡ g(u).

(g) Show that on the other hand f(u) and g(u) do depend on the IR part of the

potential, for example by comparing the IR potential V = X2Y 2 considered

above to another IR potential such as V = X6Y 6.
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If instead we used δV = εX6Y 6, we would find in part 5e instead

ZV (T, L) = T 1/6F (T−1/12L)

and

x∂xF (x) = T−
1
6L∂LZV = 8

∫ L2T− 1
6

0

dye−y
6

= 8Γ(7/6) +O(e−L
6/
√
T ).

Therefore, in the limit T � L12, the solution is

ZV = T 1/6(c+ 8Γ(7/6) log(T
−1
12 L))

and therefore

Z = Z0T
1+ 1

6 log T/Λ

and

u = U/T = T∂T logZ =
7

6
+

1

log T/Λ
=

2

3
+ L (14)

while

C = ∂TU =
7

6
+

1

log T/Λ
− 1

log2 T/Λ
=

7

6
+ L− L2. (15)

These satisfy L = u− 7
6
, so

C = u−
(
u− 7

6

)2

= f(u)

and T∂Tu = −L2 = −
(
u− 7

6

)2
= g(u) are indeed different.
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