University of California at San Diego - Department of Physics - Prof. John McGreevy

## Physics 215B QFT Winter 2022 Assignment 4 - Solutions

Due 11:59pm Monday, January 31, 2022
Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Brain-warmer. Check that $\left(\Delta_{T}\right)_{\rho}^{\mu} \equiv \delta_{\rho}^{\mu}-\frac{q^{\mu} q_{\rho}}{q^{2}}$ is a projector onto momenta transverse to $q^{\rho}$.

This requires showing both that $\Delta q=0$ and that $\Delta^{2}=\Delta$.

## 2. Tadpole diagrams.

(a) Why don't we worry about the following diagram
 to the electron self-energy in QED?

It has to vanish by Lorentz symmetry: the object ? would be a source $j^{\mu}$ for the electromagnetic field in the vacuum. At one loop, we can check that $\int \mathrm{d}^{4} k \operatorname{tr} \gamma^{\mu} \frac{k+m}{k^{2}-m^{2}}=0$ by $\operatorname{tr} \gamma^{\mu}=0$ and Lorentz symmetry, $\int^{d} 4 k k^{\mu} f\left(k^{2}\right)=0$. The one-point function for the photon also has to vanish by charge-conjugation symmetry (in fact any odd-point function of the photon does for the same reason; this is called Furry's theorem).
More generally, a tadpole diagram - a diagram with a single field line coming out of it - represents a source for the field. When we developed our Feynman rules, we expanded around a minimum of the potential for the field, and this is why there is no one-point vertex in the Feynman rules. A tadpole diagram is saying that radiative effects are producing a shift in the minimum of the potential. The (quadratic part of the) action wants to change to $\int\left((\partial A)^{2}-m_{\gamma}^{2} A^{2}+A j\right)$. The equations of motion for the zero-momentum field tell us that the minimum is at $A=j / m_{\gamma}^{2}$. In the case of a massless field, the shift is arbitrarily large (in this linear approximation). This is the source of the IR divergence in the tadpole diagram as $m_{\gamma} \rightarrow 0$. In QED, this is moot because $j=0$.

For the remainder of the problem, we consider $\phi^{3}$ theory with a (small) mass:

$$
S=\int d^{D} x\left(\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} m^{2} \phi^{2}-\frac{g}{3!} \phi^{3}\right)
$$

(b) Notice that unlike $\phi^{4}$ theory (or QED), there is no symmetry that forbids a one-point function for the scalar. Why don't we lose generality by not adding a term linear in $\phi$ to the Lagrangian?
We can shift it away by a field redefinition, $\phi \rightarrow \phi-a$. It is convenient to choose $a$ to make the linear term vanish, since then the solution to the equations of motion has $\phi_{0}=0$.
(c) Now think about the following contribution to the scalar self-energy:


Show that in the limit $m \rightarrow 0$ there is an IR divergence. By thinking about the significance for the scalar potential of this part of the diagram " $\because$ ' explain the meaning of this divergence.
The object $\because$ "' is a one-point function for the scalar. As explained in the answer to the previous part of the problem, the presence of such a onepoint function ( $V_{\text {eff }} \ni v \phi$, with $v \propto g$ ) means we are doing perturbation theory about a configuration which is not a solution to the equations of motion at order $g$. The correct solution to the equations of motion is $\phi_{0}$ with $0=m^{2} \phi_{0}+v$ so $\phi_{0}=-v / m^{2}$, which diverges when $m \rightarrow 0$. This is the origin of the IR divergence - the field theory is trying to find its minimum which, when $m \rightarrow 0$, is arbitrarily far away in field space.
3. Symmetry is attractive. Consider a field theory in $D=3+1$ with two scalar fields with the same mass which interact via the interaction

$$
V=-\frac{g}{4!}\left(\phi_{1}^{4}+\phi_{2}^{4}\right)-\frac{2 \lambda}{4!} \phi_{1}^{2} \phi_{2}^{2} .
$$

(a) Show that when $\lambda=g$ the model possesses an $\mathrm{O}(2)$ symmetry.

At this special point, the potential is $\left(\phi_{1}^{2}+\phi_{2}^{2}\right)^{2}$, which depends only on the distance from the origin of the field space.
(b) Will you need a counterterm of the form $\phi_{1} \phi_{2}$ or $\phi_{1} \square \phi_{2}$ (for general $g, \lambda$ )? If not, why not?

A very important point: such terms can't be generated because they violate the $\mathbb{Z}_{2}$ symmetry which takes $\left(\phi_{1}, \phi_{2}\right) \rightarrow\left(-\phi_{1}, \phi_{2}\right)$. In general, radiative effects (i.e. loops) will not violate symmetries of the bare action. Exceptions to this statement are called anomalies; this only happens when no regulator preserves the symmetry in question.
(c) Renormalize the theory to one loop order by regularizing (for example with a euclidean momentum cutoff or Pauli Villars), adding the necessary counterterms, and imposing a renormalization condition on the propagators (consider the case where the scalars are both massless) and $2 \rightarrow 2$ scattering amplitudes at some values of the kinematical variables $s_{0}, t_{0}, u_{0}$. Feel free to re-use our results from $\phi^{4}$ theory where appropriate.
I'll use a hard euclidean momentum cutoff since then we can reuse our results from $\phi^{4}$ theory. To save typing let me define $L(x) \equiv \frac{1}{32 \pi^{2}} \log x$. Every loop integral we will encounter is the same as in the pure massless $\phi^{4}$ theory that we did in lecture.
The symmetry that interchanges $\phi_{1} \leftrightarrow \phi_{2}$ guarantees that their self-couplings $g$ (and the masses) stay equal (using the same principle as above). This means we have only three counterterms to determine altogether: $\delta_{m^{2}}$ and two four-point counterterms $\left(\delta_{g}, \delta_{\lambda}\right)$. That is, we have to impose two renormalization conditions on the four-point functions.
First an annoying point: with the given normalization, the 1122 vertex is actually $-\mathbf{i} \lambda / 3$.
The self-energy for $\phi_{1}$ is

$$
-\mathbf{i} \Sigma\left(p^{2}\right)=-\mathbb{P I}=\underline{0}+. .=-\mathbf{i}(g+\lambda / 3) c \Lambda^{2}+\mathcal{O}(g, \lambda)^{2}
$$

where $c$ is a numerical constant that I can't remember right now and which we don't need. To put the pole at $p^{2}=m_{P}^{2}=0$, we need the bare mass to be

$$
m^{2}(\Lambda)=-\Sigma\left(p^{2}=0\right)=(g+\lambda / 4) c \Lambda^{2}
$$

As in $\phi^{4}$ theory, there is no wavefunction renormalization at one loop because $\Sigma$ is independent of $p^{2}$.
There are three different $2 \rightarrow 2$ scattering processes to consider: $11 \rightarrow$ $11,11 \rightarrow 22,12 \rightarrow 12$. (The corrections to $22 \rightarrow 22$ are the same as those for $11 \rightarrow 11$, and similiarly $22 \rightarrow 11$ is the same as $11 \rightarrow 22$, by the exchange
symmetry．）Then using the notation $\begin{aligned} & -=\left\langle\phi_{1} \phi_{1}\right\rangle \\ & -\quad\left\langle\phi_{2} \phi_{2}\right\rangle\end{aligned}$ we have

$$
\begin{equation*}
\mathcal{M}_{11 \leftarrow 11}=-g+\left(g^{2}+\left(\frac{\lambda}{3}\right)^{2}\right)\left(L\left(s / \Lambda^{2}\right)+L\left(t / \Lambda^{2}\right)+L\left(u / \Lambda^{2}\right)\right)+\delta_{g} \tag{1}
\end{equation*}
$$

The $\lambda^{2}$ term involves $\phi_{2}$ running in the loop．（Note that I am writing $\mathbf{i} \mathcal{M}=-\mathbf{i} g+(-\mathbf{i} g)^{2} \ldots$ and dividing the BHS by i．）Beware the symmetry factor of $\frac{1}{2}$ in each loop diagram．

$$
\begin{align*}
& \mathcal{M}_{22 \leftarrow 11}=-\frac{\lambda}{3}+\frac{\lambda}{3} g 2 L\left(s / \Lambda^{2}\right)+\left(\frac{\lambda}{3}\right)^{2}\left(2 L\left(t / \Lambda^{2}\right)+2 L\left(u / \Lambda^{2}\right)\right)+\delta_{\lambda}  \tag{3}\\
& \text { 药 }=x+\gamma \alpha+x+\gamma+\lambda \tag{4}
\end{align*}
$$

where the 2 in the s－channel term is from the fact that either $\phi_{1}$ or $\phi_{2}$ can run in the loop．The last two diagrams have a different symmetry factor from the others，since we can＇t exchange the two propagators in the loop－ so they get an extra factor of 2 ．

$$
\begin{align*}
& \mathcal{M}_{12 \leftarrow 12}=-\frac{\lambda}{3}+\left(\frac{\lambda}{3}\right)^{2}\left(2 L\left(s / \Lambda^{2}\right)+2 L\left(u / \Lambda^{2}\right)\right)+2 \frac{\lambda}{3} g L\left(t / \Lambda^{2}\right)+\delta_{\lambda}  \tag{5}\\
& \text { 为 }=x+x+x+\gamma+x \tag{6}
\end{align*}
$$

Using the renormalization conditions $\mathcal{M}_{11 \leftarrow 11}\left(s_{0}=t_{0}=u_{0}\right)=-g_{P}$ and $\mathcal{M}_{22 \leftarrow 11}\left(s_{0}=t_{0}=u_{0}\right)=-\frac{\lambda_{P}}{3}$ we find

$$
\begin{align*}
& \lambda(\Lambda) \equiv \lambda+\delta_{\lambda}=\lambda_{P}+\lambda_{P} 2 g_{P} L+4 \frac{\lambda_{P}^{2}}{3} L+\mathcal{O}\left(\lambda_{P}, g_{P}\right)^{2}  \tag{7}\\
& g(\Lambda) \equiv g+\delta_{g}=g_{P}+\left(g_{P}^{2}+\left(\frac{\lambda_{P}}{3}\right)^{2}\right) 3 L+\mathcal{O}\left(\lambda_{P}, g_{P}\right)^{2} \tag{8}
\end{align*}
$$

where $L \equiv L\left(s_{0} / \Lambda^{2}\right)$ ．We＇ve solved for the couplings perturbatively，to second order in both，which means we ignored the difference between e．g．g and $g_{P}$ in the quadratic term，as we must．From now on I will drop the $P$ subscripts on the physical coupling．

Notice that we would get the same answer if we defined $\lambda_{P}$ by fixing a value of $\mathcal{M}_{12 \leftarrow 12}$ instead. This is because of crossing symmetry.
(d) Consider the limit of low energies, i.e. when $s_{0}, t_{0}, u_{0} \ll \Lambda^{2}$ where $\Lambda$ is the cutoff scale. Tune the location of the poles in both propagators to $p^{2}=0$. Show that the coupling goes to the $\mathrm{O}(2)$-symmetric value if it starts nearby (nearby means $\lambda / g<3$ ).
A nice trick for doing this is to compute the beta functions.

$$
\beta_{g} \equiv 32 \pi^{2} \Lambda^{2} \partial_{\Lambda^{2}} g(\Lambda)=3\left(g^{2}+\left(\frac{\lambda}{3}\right)^{2}\right), \beta_{\lambda} \equiv 32 \pi^{2} \Lambda^{2} \partial_{\Lambda^{2}} \lambda(\Lambda)=\left(2 \lambda g+4 \frac{\lambda^{2}}{3}\right)
$$

where I've pulled out a factor of $32 \pi^{2}$ in the definition of $\beta$ for convenience - it only affects how fast the flow happens. A useful check is that if we set $\lambda=0$, we reproduce the beta function for $\phi^{4}$ theory, $\beta_{g}=+3 g^{2}$ (the 3 comes from the 3 different channels).
To look at the relative flow of $g$ and $\lambda$ let's compute
$\beta_{\lambda / g} \equiv 8 \pi^{2} \Lambda^{2} \partial_{\Lambda^{2}} \frac{\lambda}{g}=\frac{1}{g^{2}}\left(g \beta_{\lambda}-\lambda \beta_{g}\right) \propto\left(-\frac{\lambda^{3}}{3}-\frac{5}{3} g \lambda^{2}+2 g^{2} \lambda\right)=\frac{1}{3} \lambda(\lambda-g)(\lambda+6 g)$.
This looks like this:

with the convention I'm using, positive $\beta$ means that as we increase $\Lambda$, the coupling decreases. This means that the couplings approach the point $g=\lambda$ as $\Lambda \rightarrow \infty$ fixing $g_{P}, \lambda_{P}$. This is the case as long as we start with $\lambda / g<3$.
4. Bremsstrahlung. Show that the number of photons per decade of wavenumber produced by the sudden acceleration of a charge is (in the relativistic limit $-q^{2} \gg$ $m^{2}$ )

$$
f_{I R}\left(q^{2}\right)=2 \frac{\alpha}{\pi} \ln \left(\frac{-q^{2}}{m^{2}}\right)
$$

where $q_{\mu}=p_{\mu}^{\prime}-p_{\mu}$ is the change of momentum and $m$ is the mass of the charge.

This is explained well on pages 177-182 of Peskin. The energy comes out to

$$
U=\int \mathrm{d}^{3} k \frac{2 \alpha}{\pi} \ln \left(\frac{-q^{2}}{m^{2}}\right)=2 \int \mathrm{~d}^{3} k k N_{k}
$$

where $N_{k}$ is the number density of photons of momentum $k$ of each polarization, and the RHS used the fact that each photon of momentum $k$ carries energy $k$. (The 2 comes from two polarizations for each momentum) Then the number of photons is

$$
\mathcal{N}=\int \frac{d k}{k} \frac{\alpha}{\pi} \ln \left(\frac{-q^{2}}{m^{2}}\right)=\int d \log k \frac{\alpha}{\pi} \ln \left(\frac{-q^{2}}{m^{2}}\right)
$$

and hence $2 \frac{\alpha}{\pi} \ln \left(\frac{-q^{2}}{m^{2}}\right)$ is the total number of photons per decade of wavenumber. (Note that the integral over $k$ here actually diverges; this is an artifact of the approximation that the momentum change is instantaneous.)
5. Scale invariance in QFT in $D=0+0$, part 3. [I got this problem from Frederik Denef and it is optional but strongly encouraged.]

We continue our study of QFT in $D=0+0$ with two fields:

$$
Z=\int d P_{X} d P_{Y} d X d Y e^{-H / T}
$$

Let's start by considering again

$$
\begin{equation*}
H=\frac{1}{2} P_{X}^{2}+\frac{1}{2} P_{Y}^{2}+V(X, Y), \quad V(X, Y)=a X^{4}+b Y^{8} \tag{9}
\end{equation*}
$$

for some nonzero constants $a, b$.
A generic relevant deformation of (9) will flow to a Gaussian fixed point $V(X, Y) \sim$ $X^{2}+Y^{2}$ in the IR. Some other, more fine-tuned deformations will flow to other fixed points. For example, $\delta V(X, Y)=\epsilon Y^{4}$ will flow to $V(X, Y)=X^{4}+Y^{4}$. But something more interesting happens for $\delta V(X, Y)=\epsilon X^{2} Y^{2}$. This deformation is a relevant perturbation of (9) in the sense that $\delta V\left(\lambda^{1 / 4} X, \lambda^{1 / 8} Y\right)=\lambda^{\kappa} V(X, Y)$ with $\kappa=3 / 4<1$. But it is not true that the model simply flows to a fixed point with $V \propto X^{2} Y^{2}$ in the IR. That's because the model with such a potential has a divergent partition function: $\int_{-\infty}^{\infty} d X \int_{-\infty}^{\infty} d Y e^{-\epsilon X^{2} Y^{2} / T} \propto \sqrt{\frac{T}{\epsilon}} \int \frac{d X}{|X|}=\infty$. We cannot throw away the higher-order terms because they regulate the large- $X$ and large- $Y$ behavior of the integral. Thus, in this model, the UV does not completely decouple from the IR. As a consequence, naive scaling arguments break down, and the partition function develops "anomalous" logarithmic dependence on $T$ for small $T$.
(a) Compute the partition function for the model (9) deformed by $\delta V(X, Y)=$ $\epsilon X^{2} Y^{2}$ analytically using Mathematica or some other symbolic software. This will give a horrible mess of hypergeometric functions. Expand it at small $T$ and you should find something of the form

$$
\begin{equation*}
Z=Z_{0} T^{c} \log \frac{\Lambda}{T} \tag{10}
\end{equation*}
$$

up to corrections suppressed by positive powers of $\sqrt{T / \Lambda}$. Find the constants $Z_{0}, c, \Lambda$. The over all normalization $Z_{0}$ does not mean anything in classical statistical mechanics.
Mathematica will tell you that the integral

$$
Z_{V}=\int_{-\infty}^{\infty} d X d Y e^{-\left(a X^{4}+b Y^{8}+\epsilon X^{2} Y^{2}\right) / T}
$$

is

$$
\begin{aligned}
& \frac{1}{48 a^{7 / 4} \sqrt{b^{3} T}}\left[192 a^{a^{3 / 2}} b^{11 / 8} T^{7 / 8} \operatorname{Gamma}\left[\frac{9}{8}\right] \text { Ganma }\left[\frac{5}{4}\right] \text { HypergeometricPFe }\left[\left\{\frac{1}{8}, \frac{1}{8}, \frac{5}{8}\right\},\left\{\frac{1}{4}, \frac{1}{2}, \frac{3}{4}\right\}, \frac{\epsilon^{4}}{64 a^{2} b T}\right]-\right. \\
& \varepsilon\left\{6 \mathrm{ab}^{9 / 8} \mathrm{~T}^{5 / 8} \text { Gamma }\left[\frac{3}{8}\right] \text { Ganma }\left[\frac{3}{4}\right] \text { HypergeometricPFQ }\left[\left\{\frac{3}{8}, \frac{3}{8}, \frac{7}{8}\right\},\left\{\frac{1}{2}, \frac{3}{4}, \frac{5}{4}\right\}, \frac{\epsilon^{4}}{64 \mathrm{a}^{2} \mathrm{bT}}\right]+\right. \\
& \epsilon\left\{-3 \sqrt{\mathrm{a}} \mathrm{~b}^{7 / 8} \mathrm{~T}^{3 / 8} \text { Gamma }\left[\frac{5}{8}\right] \text { Gamma }\left[\frac{5}{4}\right] \text { HypergeometricPFQ }\left[\left\{\frac{5}{8}, \frac{5}{8}, \frac{9}{8}\right\},\left\{\frac{3}{4}, \frac{5}{4}, \frac{3}{2}\right\}, \frac{\epsilon^{4}}{64 \mathrm{a}^{2} \mathrm{bT}}\right]+\right. \\
& \left.\left.\left.\left(b^{5} T\right)^{1 / 8} \in \operatorname{Gamma}\left[\frac{7}{8}\right] \operatorname{Gamma}\left[\frac{7}{4}\right] \text { HypergeometricPFQ }\left[\left\{\frac{7}{8}, \frac{7}{8}, \frac{11}{8}\right\},\left\{\frac{5}{4}, \frac{3}{2}, \frac{7}{4}\right\}, \frac{\epsilon^{4}}{64 \mathrm{a}^{2} \mathrm{bT}}\right]\right)\right)\right)
\end{aligned}
$$

This function looks like:


The series expansion has a bit that goes like $\sqrt{T} \log T$ plus corrections of order $\sqrt{T}$, and a bit that goes like $T e^{\frac{\epsilon^{4}}{64 a^{2} b T}}$. The latter is a very weird function. If it were $e^{-1 / T}$ with a negative coefficient in the exponent, it would be easy to say that this is non-perturbatively small. With a positive but small coefficient (i.e. for small $\epsilon$ ) it is essentially indistinguishable from $T$, as long as $T>0$. Therefore it is subleading. If you plot each of these bits individually, you can see that the former is the part that matters.
(b) Using (10), compute the dimensionless quantities $U / T$ and $C$. (Without the logarithmic dependence on $T$, these would be equal.) Check that in the strict limit $T \rightarrow 0$, you get the values for $U / T$ and $C$ that you would have guessed based on naive scaling arguments for $V \propto X^{2} Y^{2}$. Note that a logarithm varies more slowly than the $T^{1 / 2}$ corrections that we threw away. So $Z=Z_{0} T^{1+\frac{1}{2}} \log T / \Lambda$ (don't forget the contribution from the two momentum integrals) and therefore

$$
\begin{equation*}
U / T=T \partial_{T} \log Z=\frac{3}{2}+\frac{1}{\log T / \Lambda} \tag{11}
\end{equation*}
$$

while

$$
\begin{equation*}
C=\partial_{T} U=\frac{3}{2}+\frac{1}{\log T / \Lambda}-\frac{1}{\log ^{2} T / \Lambda} \tag{12}
\end{equation*}
$$

The naive answer is $Z \sim T^{1+1 / 2}$, using $Z_{V} \stackrel{?}{=} \int d X d Y e^{-X^{2} Y^{2} \epsilon / T}=\sqrt{T / \epsilon} \int d x d y e^{-x^{2} y^{2}}$ by scaling; this would work if the integral were actually well-defined without introducing some other scale. This gives $U / T=C=\frac{3}{2}$, and indeed both of the above functions do approach $\frac{3}{2}$ as $T \rightarrow 0$. The correct curves look like

(c) To what extent does the IR physics depend on the UV completion of the $V \propto$ $X^{2} Y^{2}$ model? We could have started with $V=a X^{8}+b Y^{8}+\epsilon X^{2} Y^{2}$ instead. This model would have different high-temperature physics. Redo part for this potential. You'll find an equally-horrendous, but different combination of hypergeometric functions. Which of the parameters $Z_{0}, c, \Lambda$ are the same? Only $c$ is universal.
(d) The result of the previous part remains true for any other UV completion of the $V \propto X^{2} Y^{2}$ model, as long as $\delta V=\epsilon X^{2} Y^{2}$ remains a relevant deformation. In fact, we could equally well just take $V=\epsilon X^{2} Y^{2}$ and impose a hard cutoff on the $X$ and $Y$ integrals at some fixed values $|X| \leq X_{0},|Y| \leq Y_{0}$
(this is like $V=X^{n}+Y^{n}$ with $n \rightarrow \infty$ ). Check that this again reduces to (10).

The answer is simpler:

$$
Z_{V}^{L} \equiv \int_{-L}^{L} d X \int_{-L}^{L} d Y e^{-\epsilon X^{2} Y^{2} / T}=4 L^{2} \text { HypergeometricPFQ }\left[\left\{\frac{1}{2}, \frac{1}{2}\right\},\left\{\frac{3}{2}, \frac{3}{2}\right\},-\frac{L^{4} \epsilon}{T}\right]
$$

This has the simpler low-temperature expansion:

$$
Z_{V}^{L} \sim-\sqrt{\frac{\pi T}{\epsilon}} \log \frac{T}{\epsilon L^{4} \gamma}+\mathcal{O}\left(T^{3 / 2}\right)+e^{-L^{4} \epsilon / T} \mathcal{O}\left(T^{2}\right)
$$

where $\gamma$ is some irrelevant constant, and now the other term really is nonperturbatively small.
(e) In view of this apparent universality of (10) at low $T$, it is desirable to have a way of deriving it without having to take the detour involving the horrendous hypergeometric functions. Here is one way. We use the hard cutoff $|X| \leq L,|Y| \leq L$, so that the position-space factor is

$$
\begin{equation*}
Z_{V}(T, L)=\int_{-L}^{L} d X \int_{-L}^{L} d Y e^{-X^{2} Y^{2} / T} \tag{13}
\end{equation*}
$$

where we've set $\epsilon=1$ by a choice of temperature units. A rescaling of the integration variables $(X, Y) \rightarrow\left(T^{1 / 4} X, T^{1 / 4} Y\right)$ shows that $Z_{V}(T, L)=$ $\sqrt{T} F\left(T^{-1 / 4} L\right)$ for some function $F$ of one variable. To find $F$, compute $L \partial_{L} Z_{V}$ directly from (13). By another suitable rescaling, show that $L \partial_{L} Z$ is finite and easily computable for $L^{4} / T \rightarrow \infty$. Infer from this the dependence on the cutoff $L$ in the regime $T \ll L^{4}$ and thus the function $F$ in this regime. This reproduces (10).

$$
Z_{V}(T, L)=4 \int_{0}^{L} d X \int_{0}^{L} d Y e^{-X^{2} Y^{2} / T}=\sqrt{T} F\left(T^{-1 / 4} L\right)
$$

By the fundamental theorem of calculus,

$$
L \partial_{L} Z_{V}=4 L \int_{0}^{L} d Y e^{-L^{2} Y^{2} / T} \times 2
$$

where the last factor of two comes from the place where the $L$ derivative hits the upper limit of the $Y$ integral. By scaling $y=L^{2} Y^{2} / T$ (so $d Y=$ $d y \sqrt{T} / L)$ this is

$$
L \partial_{L} Z_{V}=8 L \frac{\sqrt{T}}{L} \int_{0}^{L^{2} T^{-1 / 2}} d y e^{-y^{2}}=8 \sqrt{T}\left(\sqrt{\frac{\pi}{2}}+\mathcal{O}\left(e^{-L^{4} / T}\right)\right)
$$

Using $\left.x \partial_{x}\right|_{T}=L \partial_{L}$, we have

$$
x \partial x F(x)=T^{-1 / 2} L \partial_{L} Z_{V}=4 \sqrt{\pi}+\mathcal{O}\left(e^{-L^{4} / T}\right)
$$

The solution of this ODE is $F(x)=c+4 \sqrt{\pi} \log x$, and therefore

$$
Z_{V}(T, L)=\sqrt{\frac{T}{\epsilon}}\left(c+\sqrt{\pi} \log \frac{\epsilon L^{4}}{T}\right)
$$

At the last step, I restored the $\epsilon$ by dimensional analysis. Since we don't care about the overall factor, we can get rid of the $\sqrt{\pi}$, and this is what we had above.
(f) We conclude that even when some kind of UV completion is required to give finite answers, the observable low-energy physics remains essentially independent of the UV completion. The infinite number of possible UV completions all flow in the IR to a partition function of the same form (10), with the details of the UV completion all lumped into a single scale parameter $\Lambda$. In fact, in the absence of other reference scales that can be used to fix a unit of temperature, the parameter $\Lambda$ does not really label physically distinct models, since we can always choose units with $\Lambda=1$. Equivalently, only dimensionless quantities (and relations between them) are physically meaningful. Examples of such dimensionless quantities are $C$ and $u \equiv U / T$. Show that $C$ and $u$ obey a universal relation $C=f(u)$ with $f(u)$ independent of $T$ and $\Lambda$, and thus independent of the UV completion of the $X^{2} Y^{2}$ model. In the same spirit, show that the function $g(u)$ in the flow equation $T \partial_{T} u=g(u)$ is independent of the UV completion.
A brute force way to do this is just to compute them both from $Z=$ $Z_{0} T \log T / \Lambda$ and find the answers in (11) and (12). Letting $L \equiv \frac{1}{\log T / \Lambda}$, we have

$$
u=\frac{3}{2}+L, C=\frac{3}{2}+L-L^{2}
$$

so $L=u-\frac{3}{2}$ and

$$
C=-u^{2}+3 u-\frac{3}{2} \equiv f(u) .
$$

Similarly,

$$
T \partial_{T} u=-\frac{1}{\log T / \Lambda}=-L^{2}=-\left(u-\frac{3}{2}\right)^{2} \equiv g(u)
$$

(g) Show that on the other hand $f(u)$ and $g(u) d o$ depend on the IR part of the potential, for example by comparing the IR potential $V=X^{2} Y^{2}$ considered above to another IR potential such as $V=X^{6} Y^{6}$.

If instead we used $\delta V=\epsilon X^{6} Y^{6}$, we would find in part 5e instead

$$
Z_{V}(T, L)=T^{1 / 6} F\left(T^{-1 / 12} L\right)
$$

and

$$
x \partial_{x} F(x)=T^{-\frac{1}{6}} L \partial_{L} Z_{V}=8 \int_{0}^{L^{2} T^{-\frac{1}{6}}} d y e^{-y^{6}}=8 \Gamma(7 / 6)+\mathcal{O}\left(e^{-L^{6} / \sqrt{T}}\right)
$$

Therefore, in the limit $T \ll L^{12}$, the solution is

$$
Z_{V}=T^{1 / 6}\left(c+8 \Gamma(7 / 6) \log \left(T^{\frac{-1}{12}} L\right)\right)
$$

and therefore

$$
Z=Z_{0} T^{1+\frac{1}{6}} \log T / \Lambda
$$

and

$$
\begin{equation*}
u=U / T=T \partial_{T} \log Z=\frac{7}{6}+\frac{1}{\log T / \Lambda}=\frac{2}{3}+L \tag{14}
\end{equation*}
$$

while

$$
\begin{equation*}
C=\partial_{T} U=\frac{7}{6}+\frac{1}{\log T / \Lambda}-\frac{1}{\log ^{2} T / \Lambda}=\frac{7}{6}+L-L^{2} \tag{15}
\end{equation*}
$$

These satisfy $L=u-\frac{7}{6}$, so

$$
C=u-\left(u-\frac{7}{6}\right)^{2}=f(u)
$$

and $T \partial_{T} u=-L^{2}=-\left(u-\frac{7}{6}\right)^{2}=g(u)$ are indeed different.

