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Physics 215B QFT Winter 2022
Assignment 7 – Solutions

Due 11:59pm Monday, February 21, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. Yukawa couplings in QED. [optional] Consider adding to QED an additional

scalar field of (physical) mass m, coupled to the electron by

LY = λφψ̄ψ.

Verify that the divergent contribution to the electron wavefunction renormaliza-

tion factor Z2 from a virtual φ equals the divergent contribution to the QED

vertex Z1 from the one loop correction to the vertex with a virtual φ. For an

added challenge, verify that the finite parts agree as well.

Since we are only worried about the UV divergences here, in the vertex correction,

one only need attend to the `2 term in the numerator of the integrand. In dim

reg, the divergent parts are

δdiv1 = 2λ2

∫ 1

0

dx

∫ 1−x

0

dy
ε− 2

D

D

2

Γ(2−D/2)

(4π)D/2Γ(3)
µ̄ε∆D/2−2.

and

δdiv2 =
(
∂/pδΣ|/p=m

)div
= −λ2

∫ 1

0

dx(1− x)
Γ(2−D/2)

(4π)D/2Γ(2)
µ̄ε∆D/2−2

Using the identity Γ(1 + x) = xΓ(x), we have D
2Γ(3)

= 1
Γ(2)

and δdiv1 = δdiv2 as

D → 4.

For purposes of matching the finite parts, some advice: we can put the electron

lines on shell and sandwich between spinors satisfying the equations of motion

(as we did for the QED vertex correction), and also set the incoming photon

momentum q = p′ − p = 0.

When using dimensional regularization, to get the finite parts to agree it is nec-

essary to continue all appearances of D = 4 to D dimensions. In particular,

the number of gamma matrices should be D, and in particular one must use the

identity:

/̀γµ/̀ =
`2

D
γνγ

µγν = −D − 2

D
`2γµ.
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2. Another consequence of unitarity of the S matrix.

(a) Show that unitarity of S, S†S = 1 = SS†, implies that the transition matrix

is normal:

T T † = T †T . (1)

(b) What does this mean for the amplitudes Mαβ (defined as usual by Tαβ =
/δ(pα − pβ)Mαβ)?

Taking matrix elements, and inserting a resolution of the identity, this says∑
β

TαβT ?γβ =
∑
β

T ?βαTγα.

In terms of M, it says∑
β

MαβM?
γβ
/δαβ =

∑
β

M?
βαMβγ/δαβ

as long as α = γ. The diagonal entries will be useful below:∑
β

/δαβ|Mαβ|2 =
∑
β

/δαβ|Mβα|2. (2)

(c) The probability of a transition from α to β is

Pα→β = |Sβα|2 = V T/δ(pα − pβ)|Mαβ|2

which is IR divergent. More useful is the transition rate per unit time per

unit volume:

Γα→β ≡
Pα→β
V T

.

Show that the the total decay rate of the state α is

Γα ≡
∫
dβΓα→β = 2ImMαα.

(d) Consider an ensemble of states pα evolving according to the evolution rule

∂tpα = −pαΓα +

∫
dβpβΓβ→α. (3)

S[p] ≡ −
∫
dαpα ln pα is the Shannon entropy of the distribution. Show that

dS

dt
≥ 0
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as a consequence of (1). This is a version of the Boltzmann H-theorem.

dS

dt
= −

∑
α

ṗα (ln pα + 1) = −
∑
α

ṗα ln pα (4)

= −
∑
α

(
−pα

∑
β

Γα→β +
∑
β

pβΓβ→α

)
ln pα (5)

part b
= −

∑
αβ

δ(kβ − kα)|Mβα|2(pβ − pα) ln pα (6)

relabel in second term
= −

∑
αβ

δ(kβ − kα)|Mβα|2 (pβ log (pα/pβ)) . (7)

In the first line, the second term drops out because 0 = ∂t(1) = ∂t(
∑

α pα).

In the step labelled ‘part b’, we used (2) to eliminate∑
β

Γα→β =
∑
β

Γβ→α =
∑
β

/δαβ|Mβα|2.

Actually, we could have done this manipulation in the expression for ṗα,

before saying anything about Ṡ, and it shows that :

ṗα =
∑
β

(pα − pβ)Γβ→α.

This fact that the same rate governs the incoming and outgoing probabilities

is usually called reversibility of the dynamics.

The right hand side of (7) is a relative entropy, which is positive (for more

on this, see this physics 239 class). To see this explicitly: for x ∈ [0, 1],

log x ≥ x− 1 (this is Jensen’s inequality). Applying this to x = pα/pβ gives

pα log pα/pβ ≥ pα − pβ and therefore

dS

dt
= −

∑
αβ

δ(kβ − kα)|Mβα|2 (pβ log (pα/pβ)) (8)

≥ −
∑
αβ

δ(kβ − kα)|Mβα|2 (pα − pβ) = 0 (9)

where at the last step the integrand is odd under α↔ β.

(e) [Bonus] Notice that we are doing something weird in the previous part by

using classical probabilities. This is a special case; more generally, we should

describe such an ensemble by a density matrix ραβ. Generalize the result of

the previous part appropriately.
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The generalization of the Shannon entropy S(p) is the von Neumann entropy

S[ρ] = −trρ log ρ. The tricky thing here is figuring out how ρ should evolve

in time. If we let it evolve unitarily, iρ̇ = [H, ρ] for some hermitian H, then

Ṡ = 0.

But actually, we need not make too much assumption about ρ̇ to answer

this question: Any density matrix ρ = ρ† has a spectral representation, ρ =∑
α pα|α〉〈α|, and the eigenvalues are probabilities. Whatever the evolution

of ρ, if ρ̇ depends only on ρ at the current time, then these eigenvalues must

evolve according to the master equation (3). And then the calculation of

the previous part follows.

The reason this ‘ρ̇(t) depends only on ρ(t)’ is an assumption is that in general

it can depend on the whole past history of the state – the environment can

have a memory. The name for the equation for ρ̇ in the case where the

environment is forgetful is the Lindblad equation.

3. An application of effective field theory in quantum mechanics.

[I learned this example from Z. Komargodski.]

Consider a model of two canonical quantum variables ([x,px] = i = [y,py], 0 =

[x,py] = [x,y], etc) with Hamiltonian

H = p2
x + p2

y + λx2y2.

(This is similar to the degenerate limit of the model studied in lecture with two

QM variables where both natural frequencies are taken to zero.)

(a) Based on a semiclassical analysis, would you think that the spectrum is

discrete or continuous?

The potential has flat directions along the coordinate axes, {x = 0} ∪ {y =

0}. This means there are unbounded classical orbits, which suggests that

the spectrum should be continuous. This conclusion is in fact wrong. (An

excuse for discounting it is that the set of initial conditions which follow

unbounded orbits have measure zero.)

(b) Study large, fixed x near y = 0. We will treat x as the slow (= low-energy)

variable, while y gets a large restoring force from the background x value.

Solve the y dynamics, and find the groundstate energy as a function of x:

Veff(x) = Eg.s. of y (x).

If we treat x as a constant, the hamiltonian for y is a harmonic oscillator

problem. The groundstate energy is

Veff(x) = Eg.s. of y (x) =
√
λ|x|
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(c) [Bonus] Presumably you did the previous part using your knowledge of the

spectrum of the harmonic oscillator. Redo the previous part using path

integral methods.

We can also do it using path integrals. Let’s do it in euclidean time. The

Lagrangian which gives H = p2 + ω2x2 is L = 1
4
ẋ2 − ω2

4
x2, with ω2 = 4λx2.

The integral we need is∫
[Dy] exp(−

∫
dtyMy) = detM−1/2 = e−

1
2

tr logM

with M ≡ (−∂2

4
+ λx2). This gives a correction to the effective action for x

e−δSeff[x] = e−
1
2

tr logM .

If we treat x as constant, and consider a time interval T , this corrects the

effective potential by

Veff(x) = +
1

2
tr logM/T = +

1

2

∫ Λ

−Λ

d̄ω log

(
ω2

4
+ λx2

)
(10)

=
1

2

(
−2Λ(2 + log 4− 2 log Λ) + 2

√
λ|x|+O(1/Λ)

)
. (11)

We need to regulate the frequency integral and ignore the meaningless ad-

ditive constant, but we get the same answer as with the canonical method.

Note that doing this calculation with non-constant x, we can do a derivative

expansion and some additional terms involving derivatives of x will also be

produced. These don’t change the conclusion below about the spectrum.

(d) The result for Veff(x) is not analytic in x at x = 0. Why?

At x = 0, y becomes massless (i.e. it is a spring whose natural frequency

goes to zero there). Integrating out massless degrees of freedom produces

singularities in the effective action.

(e) Is the spectrum of the resulting 1d model with

Heff = p2
x + Veff(x)

discrete? Is this description valid in the regime that matters for the semi-

classical analysis?

[Bonus: determine the spectrum of Heff.]

The potential V ∼ |x| bounds the trajectories and has a discrete spectrum.

Integrating out y is a better approximation at larger |x|, which is where the
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dangerous flat directions occur. That is: this approximation is valid outside

of a compact region of field space near x = y = 0 in which the potential is

bounded below. Such a region cannot produce a continuum in the spectrum.

The actual spectrum of the absolute value potential is fun. The solutions

of the Schrödinger problem (we can rescale x to get rid of the constant

prefactor in the potential) ψ(x) = ψ>(x)θ(x) + ψ<(x)θ(−x) satisfy{
(−∂2

x + (x− E))ψ> = 0, x > 0

(−∂2
x + (−x− E))ψ< = 0, x > 0

.

The solutions for x > 0 are the two Airy functions

ψ>(x) = a>Ai(x− E) + b>Bi(x− E)

of which the second blows up at large argument and hence cannot be nor-

malized so we must set b> = 0. Similarly, for x < 0, we have

ψ<(x) = a<Ai(−x− E) + b<Bi(−x− E)

and again we must set b< = 0. Since the potential has finite measure near

x = 0 (i.e. no delta function) the wavefunction and its first derivative must

be continuous at x = 0 and we have

ψ>(0) = ψ<(0) =⇒ a>Ai(−E) = a<Ai(−E)

ψ′>(0) = ψ′<(0) =⇒ a>Ai′(−E) = −a<Ai′(−E) (12)

which means either a> = a< = 0 OR Ai(−E) = 0 OR Ai′(−E) = 0.

This means that the boundstates occur at zeros of the airy function or its

derivative:

{boundstate energies } ∝ {E|Ai(−E) = 0 or Ai′(−E) = 0}.
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