University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215B QFT Winter 2022 Assignment 8 - Solutions

Due 11:59pm Monday, February 28, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. Gauge theory brain-warmers.

(a) Show that the adjoint representation matrices ${ }^{1}$

$$
\left(T^{A}\right)_{B C} \equiv-\mathbf{i} f_{A B C}
$$

furnish a dim G-dimensional representation of the Lie algebra

$$
\left[T^{A}, T^{B}\right]=\mathbf{i} f_{A B C} T^{C}
$$

Hint: commutators satisfy the Jacobi identity

$$
[A,[B, C]]+[B,[C, A]]+[C,[A, B]]=0
$$

The structure constants $f_{C}^{A B}$ are part of the definition of the Lie algebra in any representation, the generators satisfy $\left[T^{A}, T^{B}\right]=\mathbf{i} f_{C}^{A B} T^{C}$. This is a property of the algebra, not of any particular representation. The Jacobi identity follows from this fact, by taking the commutator of the BHS with T^{D}. Reshuffling this identity gives the desired equation (up to a sign which may be flipped by redefining $T \rightarrow-T$).
More abstractly, the operation $B \rightarrow \operatorname{ad}_{A}(B) \equiv[A, B]$ is called the adjoint action of A on B. The Jacobi identity is then the statement that $\operatorname{ad}_{A} \operatorname{ad}_{B}(C)-\operatorname{ad}_{B} \operatorname{ad}_{A}(C)=\operatorname{ad}_{[A, B]}(C)$, i.e. $\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right]=\operatorname{ad}_{[A, B]}$. This is the statement that the map $A \rightarrow \operatorname{ad}_{A}$ preserves the Lie algebra, and hence gives a representation, which is inevitably called the adjoint representation. In terms of the generators of an arbitrary representation, $\operatorname{ad}_{T^{A}} T^{B}=\left[T^{A}, T^{B}\right]=$ $\mathbf{i} f_{A B C} T^{C}$, we find an expression for the adjoint generators, which is indeed $\left(T_{\text {adj }}^{A}\right)_{B C}=\mathbf{i} f_{A B C}$ with the opposite sign from what I said.

[^0](b) [optional, added on Wednesday 2022-02-23] Show that if $\left(T_{A}\right)_{i j}$ are generators of a Lie algebra in some unitary representation R, then so are $-\left(T_{A}\right)_{i j}^{\star}$. Convince yourselves that these are the generators of the complex conjugate representation \bar{R}.
We have $\left[T_{A}, T_{B}\right]=\mathbf{i} f_{A B C} T_{C}$, so $\left(\left[T_{A}, T_{B}\right]\right)^{\star}=-\mathbf{i} f_{A B C} T_{C}^{\star}$ (the structure constants are real for a unitary rep) so $\left[T_{A}^{\star}, T_{B}^{\star}\right]=-\mathbf{i} f_{A B C} T_{C}^{\star}$, so $\left[-T_{A}^{\star},-T_{B}^{\star}\right]=$ $\mathbf{i} f_{A B C}\left(-T_{C}^{\star}\right)$.
The representation operators in the rep R are $e^{\mathbf{i} \alpha^{A} T^{A}}$, with α^{A} real and T^{A} hermitian (if R is a unitary representation). In the rep \bar{R}, they are $e^{-\mathbf{i} \alpha^{A}\left(T^{A}\right)^{\star}}$, so the generators in this rep are indeed $-\left(T^{A}\right)_{i j}^{\star}$.
(c) [optional, added on Wednesday 2022-02-23] Show that in a basis of Lie algebra generators where $\operatorname{tr} T^{A} T^{B}=\lambda \delta^{A B}$, the structure constants $f_{A B C}$ are completely antisymmetric.
Start from the Lie algebra $\left[T^{A}, T^{B}\right]=\mathbf{i} f^{A B C} T^{C}$, multiply the BHS by T^{D} on the right and take the trace:
$$
\lambda \mathbf{i} f^{A B D}=\operatorname{tr}\left[T^{A}, T^{B}\right] T^{D}=\operatorname{tr} T^{A} T^{B} T^{D}-\operatorname{tr} T^{B} T^{A} T^{D}
$$
and now use cyclicity of the trace, to show that this is the same as, e.g. $\operatorname{tr}\left[T^{D}, T^{A}\right] T^{B}$.
(d) From the transformation law for A, show that the non-abelian field strength transforms in the adjoint representation of the gauge group.
Mindlessly plugging in, we have
\[

$$
\begin{align*}
F_{\mu \nu}^{A} \mapsto & \partial_{\mu}\left(A_{\nu}^{A}+\partial_{\nu} \lambda^{A}-f_{A B C} \lambda^{B} A_{\nu}^{C}\right)-(\mu \leftrightarrow \nu) \\
& +f_{A B C}\left(A_{\mu}^{B}+\partial_{\mu} \lambda^{B}-f_{B D E} \lambda^{D} A_{\mu}^{E}\right)\left(A_{\nu}^{C}+\partial_{\nu} \lambda^{C}-f_{C F G} \lambda^{F} A_{\nu}^{G}\right) \\
= & F_{\mu \nu}^{A}-f_{A B C} \lambda^{B} \partial_{\mu} A_{\nu}^{C}+f_{A B C} \lambda^{B} \partial_{\nu} A_{\mu}^{C}-f_{A B C} f_{C F G} \lambda^{F} A_{\mu}^{B} A_{\nu}^{G}-f_{A B C} f_{B D E} \lambda^{D} A_{\mu}^{E} A_{\nu}^{C} \tag{1}\\
= & F_{\mu \nu}^{A}-f_{A B C} \lambda^{B} \partial_{\mu} A_{\nu}^{C}+f_{A B C} \lambda^{B} \partial_{\nu} A_{\mu}^{C}-\lambda^{D} A_{\mu}^{E} A_{\nu}^{C}\left(f_{A B C} f_{B D E}+f_{A E B} f_{B D C}\right) \tag{2}\\
= & F_{\mu \nu}^{A}-f_{A B C} \lambda^{B} \partial_{\mu} A_{\nu}^{C}+f_{A B C} \lambda^{B} \partial_{\nu} A_{\mu}^{C}-\lambda^{D} A_{\mu}^{E} A_{\nu}^{C} f_{A D B} f_{B E C} \tag{3}\\
= & F_{\mu \nu}^{A}-f_{A B C} \lambda^{B} \partial_{\mu} A_{\nu}^{C}+f_{A B C} \lambda^{B} \partial_{\nu} A_{\mu}^{C}-\lambda^{B} A_{\mu}^{D} A_{\nu}^{E} f_{A B C} f_{C D E} \tag{4}\\
= & F_{\mu \nu}^{A}-\lambda^{B} f_{A B C} F_{\mu \nu}^{C} . \tag{5}
\end{align*}
$$
\]

Everywhere we ignored $\mathcal{O}\left(\lambda^{2}\right)$ terms. At step (2) we used the Jacobi identity. At steps (1) and (3) we relabelled dummy indices.
(e) Show that

$$
\operatorname{tr} F \wedge F=d \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)
$$

Write out all the indices I've suppressed.
On the LHS, we find $\operatorname{tr} F \wedge F=\operatorname{tr} d A \wedge d A+2 \operatorname{tr} d A \wedge A \wedge A+\operatorname{tr} A \wedge A \wedge A \wedge A$ (using the fact that two-forms are commutative). The last term vanishes by cyclicity of the trace:

$$
\begin{align*}
\operatorname{tr} A^{4} \equiv \operatorname{tr} A \wedge A \wedge A \wedge A & \equiv A^{a} \wedge A^{b} \wedge A^{c} \wedge A^{d} \operatorname{tr} T^{a} T^{b} T^{c} T^{d} \tag{6}\\
& \stackrel{\text { cyclicity }}{=} A^{a} \wedge A^{b} \wedge A^{c} \wedge A^{d} \operatorname{tr} T^{d} T^{a} T^{b} T^{c} \tag{7}\\
& \stackrel{\left\{A^{3}, A\right\}=0}{=}-A^{d} \wedge A^{a} \wedge A^{b} \wedge A^{c} \operatorname{tr} T^{d} T^{a} T^{b} T^{c} \tag{8}\\
& \stackrel{\text { relabel }}{=}-A^{a} \wedge A^{b} \wedge A^{c} \wedge A^{d} \operatorname{tr} T^{a} T^{b} T^{c} T^{d}=-\operatorname{tr} A^{4} \tag{9}
\end{align*}
$$

On the RHS we get

$$
\begin{align*}
d \operatorname{tr}\left(A \wedge d A+\frac{2}{3} A \wedge A \wedge A\right)=\operatorname{tr} d A \wedge & d A+A \wedge d^{2} A \tag{10}\\
& +2 / 3(d A \wedge A \wedge A+A \wedge d A \wedge A+A \wedge A \wedge d A) \tag{11}
\end{align*}
$$

$$
\begin{equation*}
=\operatorname{tr} d A \wedge d A+2 d A \wedge A \wedge A \tag{12}
\end{equation*}
$$

using $d^{2}=0$ and again the fact that a 2-form (such as $d A$) is commutative.
(f) [Bonus] If you are feeling under-employed, find $\omega_{2 n-1}$ such that $\operatorname{tr} F^{n}=$ $d \omega_{2 n-1}$.

2. The field of a magnetic monopole.

We saw that $F=d A$ implies (when A is smooth) that $d F=0$, which means no magnetic charge. If A is singular, $d F$ can be nonzero. Moreover, by a gauge transformation we can move the singularity around and hide it.
A magnetic monopole of magnetic charge g is defined by the condition that $\int_{S^{2}} F=g$, where S^{2} any sphere surrounding the monopole. If the system is spherically symmetric, we can write

$$
F=\frac{g}{4 \pi} d \cos \theta d \varphi
$$

(In this problem, we'll work on a sphere at fixed distance from the monopole.)
(a) Show that the vector potential

$$
A_{N}=\frac{g}{4 \pi}(\cos \theta-1) d \varphi
$$

gives the correct $F=d A$. Show that it is a well-defined one-form on the sphere except at the south pole $\theta=\pi$.
(b) Show that the one-form

$$
A_{S}=\frac{g}{4 \pi}(\cos \theta+1) d \varphi
$$

also gives the correct $F=d A$. Show that it is well-defined except at the north pole $\theta=0$.
(c) Near the equator both $A_{N, S}$ are well-defined. Show that as long as eg $\in 2 \pi \mathbb{Z}$, these two one-forms differ by a gauge transformation

$$
A_{S}-A_{N}=\frac{1}{\mathbf{i} e} g^{-1}(\theta, \varphi) d g(\theta, \varphi)
$$

for $g(\theta, \varphi)$ a $\mathrm{U}(1)$-valued function on the sphere, well-defined away from the poles.
Zee page 249. The required $g(\varphi)=e^{\mathbf{i} 2 \frac{e g}{4 \pi} \varphi}$, which is single-valued $g(0)=$ $g(2 \pi)$ only under the stated condition (which is Dirac quantization of magnetic charge).

[^0]: ${ }^{1}$ Thanks to Simon Martin for help with the signs.

