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1. Abrikosov-Nielsen-Oleson vortex string.

Consider the Abelian Higgs model in D = 3 + 1:

Lh ≡ −
1

4
FµνF

µν +
1

2
|Dµφ|2 − V (|φ|)

where φ is a scalar field of charge q whose covariant derivative isDµφ = (∂µ − iqeAµ)φ,

and let’s take

V (|φ|) =
κ

2
(|φ|2 − v2)2

for some couplings κ, v. Here we are going to do some interesting classical field

theory. Set q = 1 for a bit.

(a) Consider a configuration that is independent of x3, one of the spatial co-

ordinates, and static (independent of time). Show that its energy density

(energy per unit length in x3) is

U =

∫
d2x

(
1

2
F 2

12 +
1

2
|Diφ|2 + V (|φ|)

)
.

Note that if the x3 direction is non-compact (as opposed to a circle), then we

can set A3 = 0 by a gauge transformation depending on x3 without changing

anything.

The easiest way to do this is to do the Legendre transform of the action.

(b) [optional, but used crucially below] Consider the special case where κ =

κ0 =
(
eq
2

)2
. Assuming that the integrand falls off sufficiently quickly at

large x1,2, show that

Uκ=1 =

∫
d2x

(
1

2

(
F12 +

√
κ
(
|φ|2 − v2

))2
+

1

4
|Diφ+ iεijDjφ|2 +

√
κv2F12 −

1

2
iεk`∂k (φ?D`φ)

)
.

The key identity we need to show is:

1

4
|Diφ+ iεijDjφ|2 −

1

2
iεk`∂k (φ?D`φ) =

1

2
|Diφ|2 −

eq

2
F12|φ|2. (1)
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The LHS is

1

4
|Diφ+ iεijDjφ|2 −

1

2
iεk`∂k (φ?D`φ) (2)

=
1

4
|D1φ+ iD2φ|2 +

1

4
|D2φ− iD1φ|2 −

i

2
(∂1(φ?D2φ)− ∂2(φ?D1φ)) . (3)

Note that since φ?Diφ is neutral, the ordinary derivatives are the same as

covariant derivatives: ∂i (φ
?Djφ) = Di(φ

?Djφ), and then we can use the

fact that the covariant derivative satisfies the product rule to write the LHS

as:

1

2
|Diφ|2 +

i

2
((D1φ)?D2φ− (D2φ)?D1φ) (1− 1) +

i

2
φ?[D1, D2]φ (4)

=
1

2
|Diφ|2 −

eq

2
F12|φ|2. (5)

(c) The first two terms in the energy density of the previous part are squares and

hence manifestly positive, so setting to zero the things being squared will

minimize the energy density. Show that the resulting first-order equations

(they are called BPS equations after people with those initials, Bogolmonyi,

Prasad, Sommerfeld)1

0 = (Di + iεijDj)φ, F12 = −|φ|2 + v2

are solved by (x1 + ix2 ≡ reiϕ)

φ = einϕf(r), A1 + iA2 = −ieiϕ
a(r)− n

r

if

f ′ =
a

r
f, a′ = r(f 2 − v2)

with boundary conditions

a→ 0, f → v +O
(
e−mr

)
, at r →∞ (6)

a→ n+O(r2), f → rn(1 +O(r2)), at r → 0.

(For other values of κ, the story is not as simple, but there is a solution

with the same qualitative properties. See for example §3.3 of E. Weinberg,

Classical solutions in Quantum Field Theory.)

1Let’s set κ = 1 for this discussion; it does not affect the qualitative conclusions.
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(d) The second BPS equation and (6) imply that all the action (in particular the

support of F12) is localized near r = 0. Evaluate the magnetic flux through

the x1 − x2 plane, Φ ≡
∫
B · da in the vortex configuration labelled by n.

Show that the energy density is U = v2

2
· Φ.

To evaluate the flux, one method is to write

Axdx+ Aydy = Azdz + Az̄dz̄

with z = reiϕ, z̄ = re−iϕ, so that

Az =
1

2
(Ax − iAy) =

i

2
e−iϕ

a(r)− n
r

,Az̄ =
1

2
(Ax + iAy) = − i

2
eiϕ

a(r)− n
r

.

By Stokes theorem,
∫
X
B =

∫
X
F =

∫
X
dA =

∮
∂X
A where X is a big disk

about the origin and so ∂X is a big circle far enough from the origin that we

can ignore the a(r) in A. Along this contour, dz = ieiϕrdϕ, dz̄ = −ie−iϕrdϕ,

i.e. we can ignore the dr part. Then∮
X

A =

∮
(dzAz + dz̄Az̄) =

∫ 2π

0

rdϕ
(
ieiϕAz − ie−iϕAz̄

)
(7)

r�mv=

∫ 2π

0

dϕ

(
1

2
i2eiϕe−iϕ (−n) +

1

2
(−i)2e−iϕeiϕ (−n)

)
= 2πn . (8)

(e) Show that the previous result for the flux follows from demanding that the

two terms in Diφ cancel at large r so that

Diφ
r→∞→ 0 (9)

faster than 1/r. Solve (11) for Ai in terms of φ and integrate
∫
d2xF12.

Zee page 307 (with charge q):

Ai
r→∞→ − i

qe

1

ρ2
φ?∂iφ =

1

qe
∂iϕ.

Therefore

Φ =

∫
d2xF12 =

∮
dxiAi =

2π

qe
.

(f) Argue that a single vortex (string) in the ungauged theory (with global U(1)

symmetry)

L = |∂φ|2 + V (|φ|)

does not have finite energy per unit length. By a vortex, I mean a configu-

ration where φ
r→∞→ veiϕ, where x1 + ix2 = reiϕ.

3



The kinetic energy density is

∂µφ∂
µφ = |∂rφ|2 + r−2|∂ϕφ|2 = ...+ r−2v2n2

so the energy per unit length is

U ≥
∫ L

a

drr
1

r2
v2n2 = v2n2 ln

L

a

where L is the size of the box and a is the short distance cutoff.

(g) Consider now the case where the scalar field has charge q. (Recall that in a

superconductor made by BCS pairing of electrons, the charged field which

condenses has electric charge two.) Show that the magnetic flux in the core

of the minimal (n = 1) vortex is now (restoring units) hc
qe

.

2. BPS conditions from supersymmetry. [bonus!] What’s special about κ =

κ0? For one thing, it is the boundary between type I and type II superconductors

(which are distinguished by the size of the vortex core). More sharply, it means

the mass of the scalar equals the mass of the vector, at least classically. Moreover,

in the presence of some extra fermionic fields, the model with this coupling has an

additional symmetry mixing bosons and fermions, namely supersymmetry. This

symmetry underlies the special features we found above. Here is an outline (you

can do some parts without doing others) of how this works. The logic in part

(c) underlies a lot of the progress in string theory since the mid-1990s. Please do

not trust my numerical factors.

(a) Add to Lh a charged fermion Ψ (partner of φ) and a neutral Majorana

fermion λ (partner of Aµ):

Lf =
1

2
iΨ̄ /DΨ + iλ̄ /Dλ+ λ̄Ψφ+ h.c..

Consider the transformation rules

δεAµ = iε̄γµλ, δεΨ = Dµφγ
µε, δεφ = −iε̄Ψ, δελ = −1

2
iσµνFµνε+ i(|φ|2 − v)ε

where the transformation parameter ε is a Majorana spinor (and a grass-

mann variable). Show that (something like this) is a symmetry of L =

Lh + Lf . This is N = 1 supersymmetry in D = 4.

(b) Show that the conserved charges associated with these transformations Qα

(they are grassmann objects and spinors, since they generate the transfor-

mations, via δεfields = [εαQα + h.c., fields]), satisfy the algebra

{Q, Q̄} = 2γµPµ + 2γµΣµ (10)
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where Pµ is the usual generator of spacetime translations and Σµ is the vortex

string charge, which is nonzero in a state with a vortex string stretching in

the µ direction. Q̄ ≡ Q†γ0 as usual.

(c) If we multiply (12) on the right by γ0, we get the positive operator {Qα, Q
†
β}.

This operator annihilates states which satisfy Q |BPS〉 = 0 for some com-

ponents of Q. Such a state is therefore invariant under some subgroup of the

superymmetry, and is called a BPS state. Now look at the right hand side

of (12)×γ0 in a configuration where Σ3 = πnv2 and show that its energy

density is E ≥ π|n|v2, with the inequality saturated only for BPS states.

(d) To find BPS configurations, we can simply set to zero the relevant supersym-

metry variations of the fields. Since we are going to get rid of the fermion

fields anyway, we can set them to zero and consider just the (bosonic) vari-

ations of the fermionic fields. Show that this reproduces the BPS equations.

This line of thought is the crucial ingredient by which progress has been

made in understanding many supersymmetric theories, including superstring

theories. For more, see for example here or chapter 14 of Polchinski’s book.

3. Wilson loops in abelian gauge theory at weak and strong coupling.

(a) At weak coupling, the Wilson loop expectation value is a gaussian integral.

In D = 4, study the continuum limit of a rectangular loop with time extent

T � R, the spatial extent. Show that this reproduces the Coulomb force.

VI.B of this Kogut review explains this in some detail.

(b) Consider the weak coupling calculation again for a Wilson loop coupled to

a massive vector field. Show that this reproduces an exponentially-decaying

force between external static charges.

In this case the propagator is short-ranged, so as long as R, T � m−1
A the

answer will be log 〈W (T,R)〉 ' aR + bT a perimeter law.

(c) [bonus problem] Compute the combinatorial factors in the first few terms

of the strong-coupling expansion of the Wilson loop in U(1) lattice gauge

theory.

(d) [bonus problem] Consider the case of lattice gauge theory in two spacetime

dimensions. In this case, show that the plaquette variables are actually

independent variables.

In spacetime dimensions larger than two, any 3-volume V gives a relation

between the plaquette variables, since∏
2∈∂V

U2 = 1.
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This is because U2 =
∏

`∈∂2 U2, and the plaquettes tiling the boundary of

V (∂V ) have boundaries which precisely cancel out so that the boundary

of the boundary of V is empty. This is a general deep fact about topol-

ogy: a boundary has no boundary. (This is the key ingredient in simplicial

homology.)

But in D = 2, there are no 3-volumes, and hence no relations between the

plaquette variables.

Here is another, related deep point: If we didn’t realize that the boundaries

of the plaquettes making up the boundary of V didn’t cancel, we would

write, in the abelian case,∏
2∈∂V

U2 = eie
∑

2∈∂V

∮
∂2

A Stokes
= eie

∑
2∈∂V

∫
2 F = e

ie
∫
∂V

F Stokes
= eie

∫
V dF .

But this last expression is the number of monopoles n inside the volume V

times their charge g. But

eiegn = 1

is Dirac quantization.

In contrast, in two spacetime dimensions, there are no 3-volumes, so the

plaquette variables are independent, and we can write the lattice gauge

theory path integral, even for a non-abelian group, as

Z =

∫ ∏
`

du`e
−S[U2] =

∫ ∏
2

dU2e
−S[U2]

(perhaps up to some overall constant factor). For the special case where S

is the Wilson action, the action is linear in the plaquette variables, so

Z =

∫ ∏
2

dU2e
− 1

g2

∑
2 trU2 =

∏
2

(∫
dU2e

− 1
g2

trU2

)
=
∏
2

z2 = zArea
2

where Area denotes the number of plaquettes. The theory just falls apart

into independent plaquettes which don’t care about each other. This extends

to the evaluation of correlators of Wilson loops,

〈W (C)〉 =
∏
2

(∫
dU2U2e

− 1
g2

trU2

z2

)
= w(2)Area(C)

so the area law is exact. There are no propagating degrees of freedom, but

the theory is not quite topological – it depends on areas. The object z2 is

a combination of characters of the group.
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4. Chern-Simons theory, flux attachment, and anyons.

(a) Consider the following action for a U(1) gauge field in D = 2 + 1:

S[A] =

∫ (
− 1

4g2
F ∧ ?F +

k

4π
A ∧ F

)
.

What are the dimensions of g and k? Which term (Maxwell or Chern-

Simons) is more important for questions about low energy physics? Find

the equations of motion for A. Look for plane wave solutions. Show that

the resulting particle excitations have a mass which grows with g.

In components, this action is

S[A] =

∫
d3x

(
− 1

4g2
FµνF

µν +
k

4π
εµνρAµFνρ

)
.

Since A is a gauge field, it has [A] = 1, so k is dimensionless and g2 is a

mass.

The Maxwell term is an irrelevant perturbation, while the CS term is marginal.

The equations of motion are

0 = ∂µF
µλ + akg2ελνρFνρ

for some number a = 1
π
.

One nice way to see that this is a massive wave equation is to introduce the

‘dual field strength’ F λ ≡ ελρσFρσ (equivalently, Fµν = 1
2
εµνλF

λ). Then the

EOM is

εµνρ∂νFρ + akg2F µ = 0.

Taking curl of both sides (i.e. acting with εµαβ∂
α) and using εµνρεµαβ =

δναδ
µ
β − δµαδνβ gives (

∂µ∂
µ +

(
akg2

)2
)
Fρ = 0,

a massive wave equation for each component, with M2 = (akg2)2 as the

mass.

(b) For the rest of the problem, take g → ∞. Notice that the resulting the-

ory does not require a metric, since the action is made only from exterior

derivatives and wedge products of forms. Now add a matter current j:

Sj[A] =

∫ (
k

4π
A ∧ F + A ∧ ?j

)
.

Find the equations of motion. Show that the Chern-Simons term attaches

k units of flux to the particles: F12 ∝ ρ.

The last relation is the µν = xy component of the EOM k
2π
Fµν + εµνρj

ρ = 0.
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(c) Show using the Bohm-Aharonov effect that the particles whose current den-

sity is jµ have anyonic statistics with exchange angle π
k

(supposing they were

bosons before we coupled them to A).

One way to do this is to consider a configuration of j which describes one

particle adiabatically encircling another. Show that its wavefunction ac-

quires a phase ei2π/k. This is twice the phase obtained by going halfway

around, which (when followed by an innocuous translation) would exchange

the particles.
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