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Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. When is the QCD interaction attractive?

Write the amplitude for tree-level scattering of a quark and antiquark of different

flavors (say u and d̄) in the t-channel (in Feynman ξ = 1 gauge). Compare to

the expression for eµ̄ scattering in QED.

First fix the initial colors of the quarks to be different – say the incoming u is

red and the incoming d̄ is anti-green. Show that the potential is repulsive.

Now fix the initial colors to be opposite – say the incoming u is red and the

incoming d̄ is anti-red – so that they may form a color singlet. Show that the

potential is attractive.

Alternatively or in addition, describe these results in a more gauge invariant way,

by characterizing the potential in the color-singlet and color-octet channels.

You can do this problem either by choosing a specific basis for the generators of

SU(3) in the fundamental (a common one is called the Gell-Mann matrices), or

using more abstract group theory methods.

Schwartz p.512.

The t-channel diagram is identical to the QED amplitude with replacement

e2 → g2T a3,ijT
a
3̄,k̄l̄

where T a3 and T a3̄ are the generators of SU(3) in the fundamental and antifunda-

mental representations, respectively. We saw on a previous homework that these

are related by T3̄ = −T ?3 .

A nice way to think about this is: The tensor product of 3 and 3̄ representations

decomposes into irreducible representations as 3⊗ 3̄ = 1⊕ 8, where the former is

the singlet and the latter is the adjoint.

2. Where to find a Chern-Simons term.
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Consider a field theory in D = 2 + 1 of a massive Dirac fermion, coupled to a

background U(1) gauge field A with action:

S[ψ,A] =

∫
d3xψ̄

(
i /D −m

)
ψ

where Dµ = ∂µ − iAµ.

(a) Convince yourself that the mass term for the Dirac fermion in D = 2 +

1 breaks parity symmetry. By parity symmetry I mean a transformation

ψ(x) → Γψ(Ox) where detO = −1, and Γ is a matrix acting on the spin

indices, chosen so that this operation preserves ψ̄ /∂ψ.

First: the definition of parity is an element of O(d, 1) that’s not in SO(d, 1),

i.e. one with det(g) = −1. In three spatial dimensions this is accomplished

by (t, ~x)→ (t,−~x). But in two spatial dimensions, this transformation has

only two minus signs and so has determinant one – it is just a π rotation.

(Certainly ψ̄ψ is invariant under it. And in fact Peskin’s argument for the

transformation of the Dirac field goes through exactly – it picks up a γ0.) In-

stead we must do something like (t, x, y)→ (t, x,−y) (other transformations

are related by composing with a rotation).

Now we must figure out what this does to the Dirac spinor. First recall

that the clifford algebra in D = 2 + 1 can be represented by 2× 2 matrices

(e.g. the Paulis, times some factors of i to get the squares right) and there is

no notion of chirality, since the product of the three Paulis is proportional

to the identity. We want an operation on ψ(t, x,−y) which gives back the

(massless) Dirac equation:

0 =
(
γ0∂t + γ1∂x + γ2∂y

)
ψ(t, x,−y) =

(
γ0∂t + γ1∂x − γ2∂ỹ

)
ψ(t, x, ỹ)

with ỹ ≡ −y. Inserting 1 = −γ2
2 before ψ we have

0 =
(
γ0∂t + γ1∂x − γ2∂ỹ

) (
−γ2

2

)
ψ(t, x, ỹ) = γ2

(
γ0∂t + γ1∂x + γ2∂ỹ

)
γ2ψ(t, x, ỹ)

which is proportional to /∂γ2ψ(x̃) = 0. We conclude that Pψ(t, x, y)P =

γ2ψ(t, x,−y) will work (there is a sign ambiguity in the definition of the

transformation).

This gives ψ̄ψ 7→
(
ψ†γ2†) γ0γ2ψ = ψ̄ (γ2)

2
ψ = −ψ̄ψ, while ψ̄ /Dψ → ψ̄ /Dψ.

Here we used (γµ)† γ0 = γ0γµ, andAµ(t, x, y)→ (A0(t, x,−y), Ax(t, x,−y),−Ay(t, x,−y))µ.

(b) We would like to study the effective action for the gauge field that results

from integrating out the fermion field

e−Seff [A] =

∫
[DψDψ̄]e−S[ψ,A].
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Focus on the term quadratic in A:

Seff [A] =
1

2

∫
d̄DqAµ(q)Πµν(q)Aν(q) + ...

We can compute Πµν by Feynman diagrams1. Convince yourself that Π

comes from a single loop of ψ with two A insertions.

(c) Evaluate this diagram using dim reg near D = 3. Show that, in the low-

energy limit q � m (where we can’t make on-shell fermions),

Πµν = a
m

|m|
εµνρqρ + ...

for some constant a. Find a. Convince yourself that in position space this

is a Chern-Simons term with level k = 1
2
m
|m| .

[Hint: in D = 2 + 1, trγµγνγρ = −2εµνρ.]

The key ingredient is that in D = 3 we have trγµγνγρ = −2εµνρ, as you can

check for the basis we chose above with the Pauli matrices. Note that this

would have been zero in D = 4, as in Peskin’s calculation on page 247-248.

The answer in D = 2 + 1 is then the answer for general D plus this extra

term, which also has a factor of m since it comes from expanding out the

numerators of the electron propagators:

Π2(q)µν = ...− ie2

(4π)D/2

∫ 1

0

dx
Γ(2−D/2)

∆1/2
trγµγνγρm ((p+ q)ρ − pρ) (1)

= ...+
ie2

4π

m

|m|
εµνρqν + ... (2)

where the ... is all the terms that are there in other dimensions, plus also

the terms from expanding in m2 � q2.

The effective action is then

Seff[A] =
1

2

∫
d̄3qAµ(q)Πµν(q)Aν(−q) (3)

=
e2

8π2
sign(m)

∫
d̄3Aµ(q)Aν(−q)εµνρqρ (4)

=
e2

8π2
sign(m)

∫
A ∧ dA. (5)

Clearly this shows that the mass term is odd under parity, since the Chern-

Simons term it generates is proportional to sign(m).

1The thing I’ve called Πµν here is actually twice the vacuum polarization. Sorry.
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(d) Redo this calculation by doing the Gaussian path integral over ψ.

Roughly: ∫
[DψDψ̄]eS[ψ,ψ̄,A] = det

(
i /D −m

)
= etr log(i /D−m).

Therefore

Seff[A] = Tr log
(
i/∂ − /A−m

)
= Tr log

(
i/∂ −m

) (
1 + /A

(
i/∂ −m

)−1
)
.

The trace Tr is over the space on which i /D−m acts, which is the space of

spinor-valued functions. So it includes the spinor trace tr as well as a sum∫
d3x or

∫
d̄dp. Note that the term linear in A is the familiar tadpole dia-

gram, which vanishes by charge conjugation symmetry or Furry’s theorem.

We need to expand this in A to second order to get Π, and, using

A(x̂) =

∫
d̄pe−ipx̂, f(i∂) =

∫
d̄q|q〉〈q|f(q)

the result is

Seff[A] = ...+
1

2

∫
d3x 〈x| tr /A

(
i/∂ −m

)−1 /A
(
i/∂ −m

)−1 |x〉 (6)

= ...+
1

2

∫
d3x

∫
d̄3p1,2

∫
d̄3q1,2e

−iq1x 〈x|p1〉 〈p1| e−iq2x̂ |p2〉︸ ︷︷ ︸
=
∫
d3ye−iq2y−ip1y+ip2y=/δ

3
(q2−p1+p2)

〈p2|x〉

tr
(
/A(q1)

(
/p1 −m

)−1 /A(q2)
(
/p2 −m

)−1
)

(7)

= ...+
1

2

∫
d̄dqAµ(q)Aν(−q)

∫
d̄dptr

(
γµ

1

/p−m
γν

1

/p− /q −m

)
(8)

which is the same as the diagrammatic calculation above.

3. A bit more about Chern-Simons theory.

Consider again U(1) gauge theory in D = 2+1 dimensions with the Chern-Simons

action

S[a] =
k

4π

∫
Σ

a ∧ da.

(Here I’ve changed the name of the dynamical gauge field to a lowercase a to

distinguish it from the electromagnetic field A which will appear anon.)

(a) Show that the Chern-Simons action is gauge invariant under a→ a+dλ, as

long as there is no boundary of spacetime Σ. Compute the variation of the

action in the presence of a boundary of Σ.
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(b) [bonus] Actually, the situation is a bit more subtle than the previous part

suggests. The actual gauge transformation is

a→ g−1ag +
1

i
g−1dg

which reduces to the previous if we set g = eiλ. That expression, however,

ignores the global structure of the gauge group (e.g. in the abelian case,

the fact that g is a periodic function). Consider the case where spacetime

is Σ = S1 × S2, and consider a large gauge transformation:

g = einθ

where θ is the coordinate on the circle. Show that the variation of the CS

term is −i k
4π

∫
g−1dg ∧ f (where f = da). Since the action appears in the

path integral in the form eiS, convince yourself that the path integrand is

gauge invariant if

(1)
∫

Γ
f ∈ 2πZ for all closed 2-surfaces Γ in spacetime, and

(2) k ∈ 2Z – the Chern-Simons level is quantized as an even integer.

The first condition is called flux quantization, and is closely related to Dirac’s

condition.

The quantization of the level k, i.e. the Chern-Simons coupling has a dra-

matic consequence: it means that this coupling constant cannot be renormal-

ized by a little bit, only by an integer shift. This is an enormous constraint

on the dynamics of the theory.

(c) [bonus] In the case where G is a non-abelian lie group, the argument for

quantization of the level k is more straightforward. Show that the variation

of the CS Lagrangian

LCS =
k

4π
tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
under a→ gag−1 − dgg−1 is

LCS → LCS +
k

4π
dtrdgg−1 ∧ a+

k

12π
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The integral of the second term over any closed surface is an integer. Con-

clude that eiSCS is gauge invariant if k ∈ Z.

The first term integrates to zero on a closed manifold. The second term is

the winding number of the map g : Σ→ G
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(d) Now we return to the abelian case (for an extra challenge, redo this part in

the non-Abelian case). If there is a boundary of spacetime, something must

be done to fix up this problem. Consider the case where Σ = R × UHP

where R is the time direction, and UHP is the upper half-plane y > 0.

One way to fix the problem is simply to declare that the would-be gauge

transformations which do not vanish at y = 0 are not redundancies. This

means that they represent physical degrees of freedom. Plug in a = dφ to

the Chern-Simons action (where φ(x, y → 0) ≡ φ(x) is a scalar field, and d

is the exterior derivative on the spatial manifold) to find the action for φ.

It was misleading of me to say ‘plug in a = dφ’ for the following reason. The

exterior derivative on this spacetime decomposes into d = ∂tdt+ d̃ where d̃

is just the spatial part, and similarly the gauge field is a = a0dt+ ã. Let us

choose the gauge a0 = 0. We must still impose the equations of motion for a0

(in the path integral it is a Lagrange multiplier) which says d̃ã = 0 (just the

spatial part). This equation is solved by ã = d̃φ (or rather ã = g−1dg where

g is a U(1)-valued function). This is pure gauge except at the boundary.

Plugging this into the CS term gives

S =
k

4π

∫
R×D

ã ∧
(
dt∂t + d̃

)
ã (9)

=
k

4π

∫
R×D

d̃φ ∧ dt∂td̃φ (10)

=
k

4π

∫
R×D

d̃
(
φ ∧ dt∂td̃φ

)
(11)

Stokes
=

k

4π

∫
R×∂D

φdt∂td̃φ (12)

=
k

4π

∫
R×∂D

dxdtφ∂t∂xφ (13)

IBP
= − k

4π

∫
R×∂D

dxdt∂xφ∂tφ. (14)

We can also add local terms at the boundary to the action. Consider adding

∆S = g
∫
∂Σ
a2
x (for some coupling constant g). Find the equations of motion

for φ.

This term evaluates to ∆S =
∫
∂Σ
v (∂xφ)2 . Altogether we now have

Sedge[φ] =

∫
y=0

dxdt∂xφ

(
k

4π
∂tφ+ g∂xφ

)
.

The EoM is then

δ

δφ(x)
Sedge[φ] = ∂t

(
k

4π
∂tφ+ g∂xφ

)
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which is solved if k
4π
∂tφ + g∂xφ = 0. This describes a dispersionless wave

which moves only in the signk direction – a chiral bosonic edge mode.

I should mention that this physics is realized in integer quantum Hall states

and incompressible fractional quantum Hall states. For more, I recommend

the textbook by Xiao-Gang Wen.

Interpretation: the Chern-Simons theory on a space with boundary neces-

sarily produces a chiral edge mode.

(e) Suppose we had a system in 2 + 1 dimensions with a gap to all excitations,

which breaks parity symmetry and time-reversal invariance, and involves a

conserved current Jµ, with

0 = ∂µJµ. (15)

Solve this equation by writing Jµ = 1
2π
εµνρ∂νaρ in terms of a one-form

a = aµdx
µ. Guess the leading terms in the action for aµ in a derivative

expansion. You may assume Lorentz invariance.

Well, the CS term has dimension 3 so is marginal. It has just the right

symmetries. We can also add a Maxwell term, but that has dimension 4 so

we can ignore it at low energies. This argument that the CS theory is the

low-energy effective action for incompressible quantum Hall states is due to

Wen and Zee.

(f) Now suppose the current Jµ is coupled to an external electromagnetic field

Aµ by S 3
∫
JµAµ. Ignoring the Maxwell term for a, compute the Hall

conductivity, σxy, which is defined by Ohm’s law Jx = σxyEy.

Using the action

S[a,A] =

∫ (
k

4π
a ∧ da+ JµAµ

)
=

∫
d3x

k

4π
εµνρaµ∂νaρ + εµνρ∂νaρAµ

we find the EoM

0 =
δS

δa
∝ k

2π
fµν + F µν .

Using J = ?da we can rewrite this as

F µν =
k

2π
εµνρJρ.

The components of this equation with µ, ν = 0, i) say Ei = k
2π
εijJj or

Jj =
2π

k
εijE

j

which says σxy = 4π
k

(in natural units, which means σxy = 1
k
e2

h
).
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