University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 215B QFT Winter 2022 Assignment 10 – Solutions

Due 11:59pm Monday, March 14, 2022

Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. When is the QCD interaction attractive?

Write the amplitude for *tree-level* scattering of a quark and antiquark of different flavors (say u and \bar{d}) in the *t*-channel (in Feynman $\xi = 1$ gauge). Compare to the expression for $e\bar{\mu}$ scattering in QED.

First fix the initial colors of the quarks to be different – say the incoming u is red and the incoming \overline{d} is anti-green. Show that the potential is repulsive.

Now fix the initial colors to be opposite – say the incoming u is red and the incoming \overline{d} is anti-red – so that they may form a color singlet. Show that the potential is attractive.

Alternatively or in addition, describe these results in a more gauge invariant way, by characterizing the potential in the color-singlet and color-octet channels.

You can do this problem either by choosing a specific basis for the generators of SU(3) in the fundamental (a common one is called the Gell-Mann matrices), or using more abstract group theory methods.

Schwartz p.512.

The t-channel diagram is identical to the QED amplitude with replacement

$$e^2 \rightarrow g^2 T^a_{3,ij} T^a_{\bar{3},\bar{k}\bar{l}}$$

where T_3^a and $T_{\bar{3}}^a$ are the generators of SU(3) in the fundamental and antifundamental representations, respectively. We saw on a previous homework that these are related by $T_{\bar{3}} = -T_3^*$.

A nice way to think about this is: The tensor product of 3 and 3 representations decomposes into irreducible representations as $3 \otimes \overline{3} = 1 \oplus 8$, where the former is the singlet and the latter is the adjoint.

2. Where to find a Chern-Simons term.

Consider a field theory in D = 2 + 1 of a massive Dirac fermion, coupled to a background U(1) gauge field A with action:

$$S[\psi, A] = \int d^3x \bar{\psi} \left(\mathbf{i} \not D - m \right) \psi$$

where $D_{\mu} = \partial_{\mu} - \mathbf{i}A_{\mu}$.

(a) Convince yourself that the mass term for the Dirac fermion in D = 2 + 1 breaks parity symmetry. By parity symmetry I mean a transformation $\psi(x) \to \Gamma \psi(Ox)$ where det O = -1, and Γ is a matrix acting on the spin indices, chosen so that this operation preserves $\bar{\psi} \partial \psi$.

First: the definition of parity is an element of O(d, 1) that's not in SO(d, 1), *i.e.* one with det(g) = -1. In three spatial dimensions this is accomplished by $(t, \vec{x}) \rightarrow (t, -\vec{x})$. But in two spatial dimensions, this transformation has only two minus signs and so has determinant one – it is just a π rotation. (Certainly $\bar{\psi}\psi$ is invariant under it. And in fact Peskin's argument for the transformation of the Dirac field goes through exactly – it picks up a γ^0 .) Instead we must do something like $(t, x, y) \rightarrow (t, x, -y)$ (other transformations are related by composing with a rotation).

Now we must figure out what this does to the Dirac spinor. First recall that the clifford algebra in D = 2 + 1 can be represented by 2×2 matrices (*e.g.* the Paulis, times some factors of **i** to get the squares right) and there is no notion of chirality, since the product of the three Paulis is proportional to the identity. We want an operation on $\psi(t, x, -y)$ which gives back the (massless) Dirac equation:

$$0 = \left(\gamma^0 \partial_t + \gamma^1 \partial_x + \gamma^2 \partial_y\right) \psi(t, x, -y) = \left(\gamma^0 \partial_t + \gamma^1 \partial_x - \gamma^2 \partial_{\tilde{y}}\right) \psi(t, x, \tilde{y})$$

with $\tilde{y} \equiv -y$. Inserting $1 = -\gamma_2^2$ before ψ we have

$$0 = \left(\gamma^0 \partial_t + \gamma^1 \partial_x - \gamma^2 \partial_{\tilde{y}}\right) \left(-\gamma_2^2\right) \psi(t, x, \tilde{y}) = \gamma_2 \left(\gamma^0 \partial_t + \gamma^1 \partial_x + \gamma^2 \partial_{\tilde{y}}\right) \gamma_2 \psi(t, x, \tilde{y})$$

which is proportional to $\partial \gamma^2 \psi(\tilde{x}) = 0$. We conclude that $P\psi(t, x, y)P = \gamma^2 \psi(t, x, -y)$ will work (there is a sign ambiguity in the definition of the transformation).

This gives $\bar{\psi}\psi \mapsto (\psi^{\dagger}\gamma^{2\dagger})\gamma^{0}\gamma^{2}\psi = \bar{\psi}(\gamma^{2})^{2}\psi = -\bar{\psi}\psi$, while $\bar{\psi}D\psi \to \bar{\psi}D\psi$. Here we used $(\gamma^{\mu})^{\dagger}\gamma^{0} = \gamma^{0}\gamma^{\mu}$, and $A_{\mu}(t, x, y) \to (A_{0}(t, x, -y), A_{x}(t, x, -y), -A_{y}(t, x, -y))_{\mu}$.

(b) We would like to study the effective action for the gauge field that results from integrating out the fermion field

$$e^{-S_{eff}[A]} = \int [D\psi D\bar{\psi}] e^{-S[\psi,A]}$$

Focus on the term quadratic in A:

$$S_{eff}[A] = \frac{1}{2} \int d^D q A_\mu(q) \Pi^{\mu\nu}(q) A_\nu(q) + \dots$$

We can compute $\Pi^{\mu\nu}$ by Feynman diagrams¹. Convince yourself that Π comes from a single loop of ψ with two A insertions.

(c) Evaluate this diagram using dim reg near D = 3. Show that, in the lowenergy limit $q \ll m$ (where we can't make on-shell fermions),

$$\Pi^{\mu\nu} = a \frac{m}{|m|} \epsilon^{\mu\nu\rho} q_{\rho} + \dots$$

for some constant *a*. Find *a*. Convince yourself that in position space this is a Chern-Simons term with level $k = \frac{1}{2} \frac{m}{|m|}$. [Hint: in D = 2 + 1, $\operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho} = -2\epsilon^{\mu\nu\rho}$.]

The key ingredient is that in D = 3 we have $\operatorname{tr}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho} = -2\epsilon^{\mu\nu\rho}$, as you can check for the basis we chose above with the Pauli matrices. Note that this would have been zero in D = 4, as in Peskin's calculation on page 247-248. The answer in D = 2 + 1 is then the answer for general D plus this extra term, which also has a factor of m since it comes from expanding out the numerators of the electron propagators:

$$\Pi_2(q)^{\mu\nu} = \dots - \frac{\mathbf{i}e^2}{(4\pi)^{D/2}} \int_0^1 dx \frac{\Gamma(2-D/2)}{\Delta^{1/2}} \mathrm{tr}\gamma^{\mu}\gamma^{\nu}\gamma^{\rho} m \left((p+q)_{\rho} - p_{\rho}\right) \quad (1)$$

$$= \dots + \frac{\mathbf{i}e^2}{4\pi} \frac{m}{|m|} \epsilon^{\mu\nu\rho} q_{\nu} + \dots$$
 (2)

where the ... is all the terms that are there in other dimensions, plus also the terms from expanding in $m^2 \gg q^2$.

The effective action is then

$$S_{\text{eff}}[A] = \frac{1}{2} \int d^3 q A_{\mu}(q) \Pi^{\mu\nu}(q) A_{\nu}(-q)$$
(3)

$$= \frac{e^2}{8\pi^2} \operatorname{sign}(m) \int d^3 A_{\mu}(q) A_{\nu}(-q) \epsilon^{\mu\nu\rho} q_{\rho}$$
(4)

$$= \frac{e^2}{8\pi^2} \operatorname{sign}(m) \int A \wedge dA.$$
(5)

Clearly this shows that the mass term is odd under parity, since the Chern-Simons term it generates is proportional to sign(m).

¹The thing I've called $\Pi^{\mu\nu}$ here is actually twice the vacuum polarization. Sorry.

(d) Redo this calculation by doing the Gaussian path integral over ψ . Roughly:

$$\int [D\psi D\bar{\psi}] e^{S[\psi,\bar{\psi},A]} = \det \left(\mathbf{i}\not\!\!D - m\right) = e^{\operatorname{tr}\log\left(\mathbf{i}\not\!\!D - m\right)}$$

Therefore

$$S_{\text{eff}}[A] = \text{Tr } \log \left(\mathbf{i}\partial - A - m \right) = \text{Tr } \log \left(\mathbf{i}\partial - m \right) \left(1 + A \left(\mathbf{i}\partial - m \right)^{-1} \right).$$

The trace Tr is over the space on which $\mathbf{i}\not{D} - m$ acts, which is the space of spinor-valued functions. So it includes the spinor trace tr as well as a sum $\int d^3x$ or $\int d^d p$. Note that the term linear in A is the familiar tadpole diagram, which vanishes by charge conjugation symmetry or Furry's theorem. We need to expand this in A to second order to get Π , and, using

$$A(\hat{x}) = \int dp e^{-\mathbf{i}p\hat{x}}, \quad f(\mathbf{i}\partial) = \int dq |q\rangle \langle q|f(q)$$

the result is

$$S_{\text{eff}}[A] = \dots + \frac{1}{2} \int d^3x \, \langle x | \operatorname{tr} A \left(\mathbf{i} \partial - m \right)^{-1} A \left(\mathbf{i} \partial - m \right)^{-1} | x \rangle \tag{6}$$

$$= \dots + \frac{1}{2} \int d^3x \, \int d^3p_{1,2} \int d^3q_{1,2} e^{-\mathbf{i}q_1x} \, \langle x | p_1 \rangle \underbrace{\langle p_1 | e^{-\mathbf{i}q_2\hat{x}} | p_2 \rangle}_{= \int d^3y e^{-\mathbf{i}q_2y - \mathbf{i}p_1y + \mathbf{i}p_2y} = \delta^3(q_2 - p_1 + p_2)} \langle p_2 | x \rangle$$

$$\operatorname{tr} \left(A(q_1) \left(p_1 - m \right)^{-1} A(q_2) \left(p_2 - m \right)^{-1} \right) \tag{7}$$

$$= \dots + \frac{1}{2} \int d^dq A_\mu(q) A_\nu(-q) \int d^dp \operatorname{tr} \left(\gamma^\mu \frac{1}{\not{p} - m} \gamma^\nu \frac{1}{\not{p} - \not{q} - m} \right) \tag{8}$$

which is the same as the diagrammatic calculation above.

3. A bit more about Chern-Simons theory.

Consider again U(1) gauge theory in D = 2+1 dimensions with the Chern-Simons action

$$S[a] = \frac{k}{4\pi} \int_{\Sigma} a \wedge da.$$

(Here I've changed the name of the dynamical gauge field to a lowercase a to distinguish it from the electromagnetic field A which will appear anon.)

(a) Show that the Chern-Simons action is gauge invariant under $a \to a + d\lambda$, as long as there is no boundary of spacetime Σ . Compute the variation of the action in the presence of a boundary of Σ .

(b) [bonus] Actually, the situation is a bit more subtle than the previous part suggests. The actual gauge transformation is

$$a \to g^{-1}ag + \frac{1}{\mathbf{i}}g^{-1}dg$$

which reduces to the previous if we set $g = e^{i\lambda}$. That expression, however, ignores the global structure of the gauge group (*e.g.* in the abelian case, the fact that g is a periodic function). Consider the case where spacetime is $\Sigma = S^1 \times S^2$, and consider a *large gauge transformation*:

$$g = e^{\mathbf{i}n\theta}$$

where θ is the coordinate on the circle. Show that the variation of the CS term is $-\mathbf{i}\frac{k}{4\pi}\int g^{-1}dg \wedge f$ (where f = da). Since the action appears in the path integral in the form $e^{\mathbf{i}S}$, convince yourself that the path integrand is gauge invariant if

(1) $\int_{\Gamma} f \in 2\pi\mathbb{Z}$ for all closed 2-surfaces Γ in spacetime, and

(2) $k \in 2\mathbb{Z}$ – the Chern-Simons level is quantized as an *even* integer.

The first condition is called flux quantization, and is closely related to Dirac's condition.

The quantization of the level k, i.e. the Chern-Simons coupling has a dramatic consequence: it means that this coupling constant cannot be renormalized by a little bit, only by an integer shift. This is an enormous constraint on the dynamics of the theory.

(c) [bonus] In the case where G is a non-abelian lie group, the argument for quantization of the level k is more straightforward. Show that the variation of the CS Lagrangian

$$\mathcal{L}_{CS} = \frac{k}{4\pi} \operatorname{tr}\left(a \wedge da + \frac{2}{3}a \wedge a \wedge a\right)$$

under $a \to gag^{-1} - dgg^{-1}$ is

$$\mathcal{L}_{CS} \to \mathcal{L}_{CS} + \frac{k}{4\pi} d\mathrm{tr} dg g^{-1} \wedge a + \frac{k}{12\pi} \mathrm{tr} \left(g^{-1} dg \wedge g^{-1} dg \wedge g^{-1} dg \right).$$

The integral of the second term over any closed surface is an integer. Conclude that $e^{iS_{CS}}$ is gauge invariant if $k \in \mathbb{Z}$.

The first term integrates to zero on a closed manifold. The second term is the winding number of the map $g: \Sigma \to \mathsf{G}$

(d) Now we return to the abelian case (for an extra challenge, redo this part in the non-Abelian case). If there is a boundary of spacetime, something must be done to fix up this problem. Consider the case where $\Sigma = \mathbb{R} \times \text{UHP}$ where \mathbb{R} is the time direction, and UHP is the upper half-plane y > 0. One way to fix the problem is simply to declare that the would-be gauge transformations which do not vanish at y = 0 are not redundancies. This means that they represent physical degrees of freedom. Plug in $a = d\phi$ to the Chern-Simons action (where $\phi(x, y \to 0) \equiv \phi(x)$ is a scalar field, and d is the exterior derivative on the spatial manifold) to find the action for ϕ .

It was misleading of me to say 'plug in $a = d\phi$ ' for the following reason. The exterior derivative on this spacetime decomposes into $d = \partial_t dt + \tilde{d}$ where \tilde{d} is just the spatial part, and similarly the gauge field is $a = a_0 dt + \tilde{a}$. Let us choose the gauge $a_0 = 0$. We must still impose the equations of motion for a_0 (in the path integral it is a Lagrange multiplier) which says $\tilde{d}\tilde{a} = 0$ (just the spatial part). This equation is solved by $\tilde{a} = \tilde{d}\phi$ (or rather $\tilde{a} = g^{-1}dg$ where g is a U(1)-valued function). This is pure gauge except at the boundary. Plugging this into the CS term gives

$$S = \frac{k}{4\pi} \int_{\mathbb{R} \times D} \tilde{a} \wedge \left(dt \partial_t + \tilde{d} \right) \tilde{a} \tag{9}$$

$$=\frac{k}{4\pi}\int_{\mathbb{R}\times D}\tilde{d}\phi\wedge dt\partial_t\tilde{d}\phi\tag{10}$$

$$=\frac{k}{4\pi}\int_{\mathbb{R}\times D}\tilde{d}\left(\phi\wedge dt\partial_t\tilde{d}\phi\right)\tag{11}$$

$$\stackrel{\text{Stokes}}{=} \frac{k}{4\pi} \int_{\mathbb{R} \times \partial D} \phi dt \partial_t \tilde{d}\phi \tag{12}$$

$$=\frac{k}{4\pi}\int_{\mathbb{R}\times\partial D}dxdt\phi\partial_t\partial_x\phi\tag{13}$$

$$\stackrel{\text{IBP}}{=} -\frac{k}{4\pi} \int_{\mathbb{R} \times \partial D} dx dt \partial_x \phi \partial_t \phi. \tag{14}$$

We can also add local terms at the boundary to the action. Consider adding $\Delta S = g \int_{\partial \Sigma} a_x^2$ (for some coupling constant g). Find the equations of motion for ϕ .

This term evaluates to $\Delta S = \int_{\partial \Sigma} v \left(\partial_x \phi \right)^2$. Altogether we now have

$$S_{\text{edge}}[\phi] = \int_{y=0} dx dt \partial_x \phi \left(\frac{k}{4\pi} \partial_t \phi + g \partial_x \phi\right).$$

The EoM is then

$$\frac{\delta}{\delta\phi(x)}S_{\text{edge}}[\phi] = \partial_t \left(\frac{k}{4\pi}\partial_t\phi + g\partial_x\phi\right)$$

which is solved if $\frac{k}{4\pi}\partial_t \phi + g\partial_x \phi = 0$. This describes a dispersionless wave which moves only in the signk direction – a chiral bosonic edge mode.

I should mention that this physics is realized in integer quantum Hall states and incompressible fractional quantum Hall states. For more, I recommend the textbook by Xiao-Gang Wen.

Interpretation: the Chern-Simons theory on a space with boundary necessarily produces a chiral edge mode.

(e) Suppose we had a system in 2 + 1 dimensions with a gap to all excitations, which breaks parity symmetry and time-reversal invariance, and involves a conserved current J^{μ} , with

$$0 = \partial^{\mu} J_{\mu}. \tag{15}$$

Solve this equation by writing $J^{\mu} = \frac{1}{2\pi} \epsilon^{\mu\nu\rho} \partial_{\nu} a_{\rho}$ in terms of a one-form $a = a_{\mu} dx^{\mu}$. Guess the leading terms in the action for a_{μ} in a derivative expansion. You may assume Lorentz invariance.

Well, the CS term has dimension 3 so is marginal. It has just the right symmetries. We can also add a Maxwell term, but that has dimension 4 so we can ignore it at low energies. This argument that the CS theory is the low-energy effective action for incompressible quantum Hall states is due to Wen and Zee.

(f) Now suppose the current J^{μ} is coupled to an external electromagnetic field A_{μ} by $S \ni \int J^{\mu}A_{\mu}$. Ignoring the Maxwell term for a, compute the Hall conductivity, σ^{xy} , which is defined by Ohm's law $J^{x} = \sigma^{xy}E^{y}$. Using the action

$$S[a,A] = \int \left(\frac{k}{4\pi}a \wedge da + J^{\mu}A_{\mu}\right) = \int d^{3}x \frac{k}{4\pi} \epsilon^{\mu\nu\rho}a_{\mu}\partial_{\nu}a_{\rho} + \epsilon^{\mu\nu\rho}\partial_{\nu}a_{\rho}A_{\mu}$$

we find the EoM

$$0 = \frac{\delta S}{\delta a} \propto \frac{k}{2\pi} f^{\mu\nu} + F^{\mu\nu}.$$

Using $J = \star da$ we can rewrite this as

$$F^{\mu\nu} = \frac{k}{2\pi} \epsilon^{\mu\nu\rho} J_{\rho}.$$

The components of this equation with $\mu, \nu = 0, i$) say $E^i = \frac{k}{2\pi} \epsilon^{ij} J_j$ or

$$J_j = \frac{2\pi}{k} \epsilon_{ij} E^j$$

which says $\sigma^{xy} = \frac{4\pi}{k}$ (in natural units, which means $\sigma^{xy} = \frac{1}{k} \frac{e^2}{h}$).