University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 215B QFT Winter 2022 Assignment 10

Due 11:59pm Monday, March 14, 2022
Thanks in advance for following the submission guidelines on hw01. Please ask me by email if you have any trouble.

1. When is the QCD interaction attractive?

Write the amplitude for tree-level scattering of a quark and antiquark of different flavors (say u and \bar{d}) in the t-channel (in Feynman $\xi=1$ gauge). Compare to the expression for $e \bar{\mu}$ scattering in QED.

First fix the initial colors of the quarks to be different - say the incoming u is red and the incoming \bar{d} is anti-green. Show that the potential is repulsive.
Now fix the initial colors to be opposite - say the incoming u is red and the incoming \bar{d} is anti-red - so that they may form a color singlet. Show that the potential is attractive.

Alternatively or in addition, describe these results in a more gauge invariant way, by characterizing the potential in the color-singlet and color-octet channels.

You can do this problem either by choosing a specific basis for the generators of $\mathrm{SU}(3)$ in the fundamental (a common one is called the Gell-Mann matrices), or using more abstract group theory methods.
2. Where to find a Chern-Simons term.

Consider a field theory in $D=2+1$ of a massive Dirac fermion, coupled to a background $\mathrm{U}(1)$ gauge field A with action:

$$
S[\psi, A]=\int d^{3} x \bar{\psi}(\mathbf{i} \not D-m) \psi
$$

where $D_{\mu}=\partial_{\mu}-\mathbf{i} A_{\mu}$.
(a) Convince yourself that the mass term for the Dirac fermion in $D=2+$ 1 breaks parity symmetry. By parity symmetry I mean a transformation $\psi(x) \rightarrow \Gamma \psi(O x)$ where $\operatorname{det} O=-1$, and Γ is a matrix acting on the spin indices, chosen so that this operation preserves $\bar{\psi} \not \partial \psi$.
(b) We would like to study the effective action for the gauge field that results from integrating out the fermion field

$$
e^{-S_{e f f}[A]}=\int[D \psi D \bar{\psi}] e^{-S[\psi, A]}
$$

Focus on the term quadratic in A :

$$
S_{e f f}[A]=\int d^{D} q A_{\mu}(q) \Pi^{\mu \nu}(q) A_{\nu}(q)+\ldots
$$

We can compute $\Pi^{\mu \nu}$ by Feynman diagrams ${ }^{1}$. Convince yourself that Π comes from a single loop of ψ with two A insertions.
(c) Evaluate this diagram using dim reg near $D=3$. Show that, in the lowenergy limit $q \ll m$ (where we can't make on-shell fermions),

$$
\Pi^{\mu \nu}=a \frac{m}{|m|} \epsilon^{\mu \nu \rho} q_{\rho}+\ldots
$$

for some constant a. Find a. Convince yourself that in position space this is a Chern-Simons term with level $k=\frac{1}{2} \frac{m}{|m|}$.
[Hint: in $D=2+1, \operatorname{tr} \gamma^{\mu} \gamma^{\nu} \gamma^{\rho}=-2 \epsilon^{\mu \nu \rho}$.]
(d) Redo this calculation by doing the Gaussian path integral over ψ.

3. A bit more about Chern-Simons theory.

Consider again $\mathrm{U}(1)$ gauge theory in $D=2+1$ dimensions with the Chern-Simons action

$$
S[a]=\frac{k}{4 \pi} \int_{\Sigma} a \wedge d a
$$

(Here I've changed the name of the dynamical gauge field to a lowercase a to distinguish it from the electromagnetic field A which will appear anon.)
(a) Show that the Chern-Simons action is gauge invariant under $a \rightarrow a+d \lambda$, as long as there is no boundary of spacetime Σ. Compute the variation of the action in the presence of a boundary of Σ.
(b) [bonus] Actually, the situation is a bit more subtle than the previous part suggests. The actual gauge transformation is

$$
a \rightarrow g^{-1} a g+\frac{1}{\mathbf{i}} g^{-1} d g
$$

which reduces to the previous if we set $g=e^{\mathbf{i} \lambda}$. That expression, however, ignores the global structure of the gauge group (e.g. in the abelian case,

[^0]the fact that g is a periodic function). Consider the case where spacetime is $\Sigma=S^{1} \times S^{2}$, and consider a large gauge transformation:
$$
g=e^{\mathbf{i} n \theta}
$$
where θ is the coordinate on the circle. Show that the variation of the CS term is $-\mathrm{i} \frac{k}{4 \pi} \int g^{-1} d g \wedge f$ (where $f=d a$). Since the action appears in the path integral in the form $e^{\mathrm{i} S}$, convince yourself that the path integrand is gauge invariant if
(1) $\int_{\Gamma} f \in 2 \pi \mathbb{Z}$ for all closed 2-surfaces Γ in spacetime, and
(2) $k \in 2 \mathbb{Z}$ - the Chern-Simons level is quantized as an even integer.

The first condition is called flux quantization, and is closely related to Dirac's condition.
The quantization of the level k, i.e. the Chern-Simons coupling has a dramatic consequence: it means that this coupling constant cannot be renormalized by a little bit, only by an integer shift. This is an enormous constraint on the dynamics of the theory.
(c) [bonus] In the case where G is a non-abelian lie group, the argument for quantization of the level k is more straightforward. Show that the variation of the CS Lagrangian

$$
\mathcal{L}_{C S}=\frac{k}{4 \pi} \operatorname{tr}\left(a \wedge d a+\frac{2}{3} a \wedge a \wedge a\right)
$$

under $a \rightarrow g a g^{-1}-d g g^{-1}$ is

$$
\mathcal{L}_{C S} \rightarrow \mathcal{L}_{C S}+\frac{k}{4 \pi} d \operatorname{tr} d g g^{-1} \wedge a+\frac{k}{12 \pi} \operatorname{tr}\left(g^{-1} d g \wedge g^{-1} d g \wedge g^{-1} d g\right)
$$

The integral of the second term over any closed surface is an integer. Conclude that $e^{\mathbf{i} S_{C S}}$ is gauge invariant if $k \in \mathbb{Z}$.
(d) Now we return to the abelian case (for an extra challenge, redo this part in the non-Abelian case). If there is a boundary of spacetime, something must be done to fix up this problem. Consider the case where $\Sigma=\mathbb{R} \times$ UHP where \mathbb{R} is the time direction, and UHP is the upper half-plane $y>0$. One way to fix the problem is simply to declare that the would-be gauge transformations which do not vanish at $y=0$ are not redundancies. This means that they represent physical degrees of freedom. Plug in $a=d \phi$ to the Chern-Simons action (where $\phi(x, y \rightarrow 0) \equiv \phi(x)$ is a scalar field, and d is the exterior derivative on the spatial manifold) to find the action for ϕ.

We can also add local terms at the boundary to the action. Consider adding $\Delta S=g \int_{\partial \Sigma} a_{x}^{2}$ (for some coupling constant g). Find the equations of motion for ϕ.
Interpretation: the Chern-Simons theory on a space with boundary necessarily produces a chiral edge mode.
(e) Suppose we had a system in $2+1$ dimensions with a gap to all excitations, which breaks parity symmetry and time-reversal invariance, and involves a conserved current J^{μ}, with

$$
\begin{equation*}
0=\partial^{\mu} J_{\mu} \tag{1}
\end{equation*}
$$

Solve this equation by writing $J^{\mu}=\frac{1}{2 \pi} \epsilon^{\mu \nu \rho} \partial_{\nu} a_{\rho}$ in terms of a one-form $a=a_{\mu} d x^{\mu}$. Guess the leading terms in the action for a_{μ} in a derivative expansion. You may assume Lorentz invariance.
(f) Now suppose the current J^{μ} is coupled to an external electromagnetic field A_{μ} by $S \ni \int J^{\mu} A_{\mu}$. Ignoring the Maxwell term for a, compute the Hall conductivity, $\sigma^{x y}$, which is defined by Ohm's law $J^{x}=\sigma^{x y} E^{y}$.

[^0]: ${ }^{1}$ The thing I've called $\Pi^{\mu \nu}$ here is actually twice the vacuum polarization. Sorry.

