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Thanks in advance for following the submission guidelines on hw01. Please ask me

by email if you have any trouble.

1. When is the QCD interaction attractive?

Write the amplitude for tree-level scattering of a quark and antiquark of different

flavors (say u and d̄) in the t-channel (in Feynman ξ = 1 gauge). Compare to

the expression for eµ̄ scattering in QED.

First fix the initial colors of the quarks to be different – say the incoming u is

red and the incoming d̄ is anti-green. Show that the potential is repulsive.

Now fix the initial colors to be opposite – say the incoming u is red and the

incoming d̄ is anti-red – so that they may form a color singlet. Show that the

potential is attractive.

Alternatively or in addition, describe these results in a more gauge invariant way,

by characterizing the potential in the color-singlet and color-octet channels.

You can do this problem either by choosing a specific basis for the generators of

SU(3) in the fundamental (a common one is called the Gell-Mann matrices), or

using more abstract group theory methods.

2. Where to find a Chern-Simons term.

Consider a field theory in D = 2 + 1 of a massive Dirac fermion, coupled to a

background U(1) gauge field A with action:

S[ψ,A] =

∫
d3xψ̄

(
i /D −m

)
ψ

where Dµ = ∂µ − iAµ.

(a) Convince yourself that the mass term for the Dirac fermion in D = 2 +

1 breaks parity symmetry. By parity symmetry I mean a transformation

ψ(x) → Γψ(Ox) where detO = −1, and Γ is a matrix acting on the spin

indices, chosen so that this operation preserves ψ̄ /∂ψ.
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(b) We would like to study the effective action for the gauge field that results

from integrating out the fermion field

e−Seff [A] =

∫
[DψDψ̄]e−S[ψ,A].

Focus on the term quadratic in A:

Seff [A] =

∫
dDqAµ(q)Πµν(q)Aν(q) + ...

We can compute Πµν by Feynman diagrams1. Convince yourself that Π

comes from a single loop of ψ with two A insertions.

(c) Evaluate this diagram using dim reg near D = 3. Show that, in the low-

energy limit q � m (where we can’t make on-shell fermions),

Πµν = a
m

|m|
εµνρqρ + ...

for some constant a. Find a. Convince yourself that in position space this

is a Chern-Simons term with level k = 1
2
m
|m| .

[Hint: in D = 2 + 1, trγµγνγρ = −2εµνρ.]

(d) Redo this calculation by doing the Gaussian path integral over ψ.

3. A bit more about Chern-Simons theory.

Consider again U(1) gauge theory in D = 2+1 dimensions with the Chern-Simons

action

S[a] =
k

4π

∫
Σ

a ∧ da.

(Here I’ve changed the name of the dynamical gauge field to a lowercase a to

distinguish it from the electromagnetic field A which will appear anon.)

(a) Show that the Chern-Simons action is gauge invariant under a→ a+dλ, as

long as there is no boundary of spacetime Σ. Compute the variation of the

action in the presence of a boundary of Σ.

(b) [bonus] Actually, the situation is a bit more subtle than the previous part

suggests. The actual gauge transformation is

a→ g−1ag +
1

i
g−1dg

which reduces to the previous if we set g = eiλ. That expression, however,

ignores the global structure of the gauge group (e.g. in the abelian case,

1The thing I’ve called Πµν here is actually twice the vacuum polarization. Sorry.
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the fact that g is a periodic function). Consider the case where spacetime

is Σ = S1 × S2, and consider a large gauge transformation:

g = einθ

where θ is the coordinate on the circle. Show that the variation of the CS

term is −i k
4π

∫
g−1dg ∧ f (where f = da). Since the action appears in the

path integral in the form eiS, convince yourself that the path integrand is

gauge invariant if

(1)
∫

Γ
f ∈ 2πZ for all closed 2-surfaces Γ in spacetime, and

(2) k ∈ 2Z – the Chern-Simons level is quantized as an even integer.

The first condition is called flux quantization, and is closely related to Dirac’s

condition.

The quantization of the level k, i.e. the Chern-Simons coupling has a dra-

matic consequence: it means that this coupling constant cannot be renormal-

ized by a little bit, only by an integer shift. This is an enormous constraint

on the dynamics of the theory.

(c) [bonus] In the case where G is a non-abelian lie group, the argument for

quantization of the level k is more straightforward. Show that the variation

of the CS Lagrangian

LCS =
k

4π
tr

(
a ∧ da+

2

3
a ∧ a ∧ a

)
under a→ gag−1 − dgg−1 is

LCS → LCS +
k

4π
dtrdgg−1 ∧ a+

k

12π
tr
(
g−1dg ∧ g−1dg ∧ g−1dg

)
.

The integral of the second term over any closed surface is an integer. Con-

clude that eiSCS is gauge invariant if k ∈ Z.

(d) Now we return to the abelian case (for an extra challenge, redo this part in

the non-Abelian case). If there is a boundary of spacetime, something must

be done to fix up this problem. Consider the case where Σ = R × UHP

where R is the time direction, and UHP is the upper half-plane y > 0.

One way to fix the problem is simply to declare that the would-be gauge

transformations which do not vanish at y = 0 are not redundancies. This

means that they represent physical degrees of freedom. Plug in a = dφ to

the Chern-Simons action (where φ(x, y → 0) ≡ φ(x) is a scalar field, and d

is the exterior derivative on the spatial manifold) to find the action for φ.
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We can also add local terms at the boundary to the action. Consider adding

∆S = g
∫
∂Σ
a2
x (for some coupling constant g). Find the equations of motion

for φ.

Interpretation: the Chern-Simons theory on a space with boundary neces-

sarily produces a chiral edge mode.

(e) Suppose we had a system in 2 + 1 dimensions with a gap to all excitations,

which breaks parity symmetry and time-reversal invariance, and involves a

conserved current Jµ, with

0 = ∂µJµ. (1)

Solve this equation by writing Jµ = 1
2π
εµνρ∂νaρ in terms of a one-form

a = aµdx
µ. Guess the leading terms in the action for aµ in a derivative

expansion. You may assume Lorentz invariance.

(f) Now suppose the current Jµ is coupled to an external electromagnetic field

Aµ by S 3
∫
JµAµ. Ignoring the Maxwell term for a, compute the Hall

conductivity, σxy, which is defined by Ohm’s law Jx = σxyEy.
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