
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 213/113 Winter 2023
Assignment 0.5 – Solutions

Due 12:30pm Tuesday, January 17, 2023

Here are some bonus problems for the benefit of those of you with limited prior

experience with quantum mechanics. These problems are strictly optional, unless you

find them difficult, in which case they are compulsory. If any of the notation is not

clear please ask. You may find these notes helpful.

1. Pauli spin matrix gymnastics.

(This problem is long but each part is pretty simple.) Recall the definition of the

Pauli spin matrices:

σx =

(
0 1

1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0

0 −1

)
(Occasionally I will write σx ≡ σ1 ≡X,σy ≡ σ2 ≡ Y ,σz ≡ σ3 ≡ Z.)

(a) Show that the σi are Hermitian.

X and Z are real and symmetric and thus hermitian, while Y is imaginary

and antisymmetric.

(b) Check that the σi all square to the identity operator, (σi)
2

= 1,∀i.

(c) Check that the σs are all traceless, trσi = 0,∀i, where the trace operation

is defined as tr (M) ≡
∑

aMaa.

(d) Find their eigenvalues and eigenvectors.

Z : |0〉 ≡
(

1

0

)
and |1〉 ≡

(
0

1

)
with eigenvalues ±1 respectively.

X : |±〉 ≡ 1√
2
(|0〉 ± |1〉) with eigenvalues ±1 respectively.

Y : |y±〉 ≡ 1√
2
(|0〉 ± i |1〉) eigenvalues ±1 respectively.

(e) There are only so many two-by-two matrices. A product of sigmas can be

written in terms of sigmas. Show that

σiσj = iεijkσk + δij1 (1)

where εijk is the completely antisymmetric object with ε123 = 1 (that is:

εijk = 0 if any of ijk are the same, = 1 if ijk is a cyclic permutation of 123
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and = −1 if ijk is an odd permutation of 123, like 132). You may prefer to

do parts 1g and 1h of the problem first.

First note that (σi)2 = 1 for any i. This is the source of the δij1 term. The

εijk term will vanish if i = j because by definition it is 0 on repeated indices.

The iεijkσk piece one can find by exhaustively multiplying pairs, shown not

here. You always get the third Pauli matrix with a factor of i and sign which

depends on whether the permutation (the order of the product) is even or

odd.

(f) There are only so many two-by-two hermitian matrices. Convince yourself

that an arbitrary hermitian operator A acting on a two-dimensional Hilbert

space can be decomposed as

A = a01 + a1X + a2Y + a3Z ≡ aµσ
µ

where σ0 ≡ 1 is the identity operator (which does nothing to everyone).

Furthermore, show that the coefficients aµ can be extracted by taking traces:

aµ = ctr (Aσµ)

for some constant c. Find c.

(g) Convince yourself that (1) implies

[σi,σj] = 2iεijkσk,

(where [A,B] ≡ AB −BA is the commutator) and that therefore Ji1
2

≡ 1
2
σi

satisfy

[Ji1
2
,Jj1

2

] = iεijkJk1
2
,

the same algebra as the rotation generators on the 3-state system in §1.5 of

these lecture notes. [Cultural note: this is the Lie algebra called su(2).]

Use the above: [σi, σj] = σiσj − σjσi = iεijkσk − iεjikσk = iεijkσk + iεijkσk

(h) Convince yourself that (1) implies

{σi,σj} = 2δij

where {A,B} ≡ AB +BA is called the anti-commutator.

[Cultural note: this is called the Dirac algebra or Clifford algebra.]

It may be useful to note that {A,B}+ [A,B] = 2AB.

{σi, σj} = 2σiσj − [σi, σj] = (2iεijkσk + 2δij)− 2iεijkσk = 2δij
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(i) Convince yourself that (1) is the same as

(~σ · ~a)(~σ ·~b) = ~a ·~b+ i~σ ·
(
~a×~b

)
.

In particular, check that (~σ · n̂)2 = 1 if n̂ is a unit vector.

(~σ · ~a)(~σ ·~b) =
∑

ij aibjσ
iσj

=
∑

ij aibj(iε
ijkσk + δij1) =

∑
ij aibjδ

ij + i
∑

ij ε
ijkaibjσ

k

= ~a ·~b+ i~σ · (~a×~b) as (~a×~b)k =
∑

ij ε
ijkaibj

(~σ · n̂)2 = 1 is then simply a special case.

(j) Show that

ei
θ
2
~σ·n̂ = 1 cos

θ

2
+ i~σ · n̂ sin

θ

2
where n̂ is a unit vector.

[Hint: use the Taylor expansion of the LHS eA = 1 +A+A2/2! + ... and the

previous results for (~σ · n̂)2.]

ei
θ
2
~σ·n̂ = 1 + (i θ

2
~σ · n̂) + 1

2
(i θ

2
~σ · n̂)2 + 1

6
(i θ

2
~σ · n̂)3 + 1

4!
(i θ

2
~σ · n̂)4 · · ·

= (1− 1
2
( θ
2
)2 + 1

4!
( θ
2
)4 + · · · )1 + i~σ · n̂(1− 1

6
( θ
2
)3 + · · · )

= cos θ
2
1 + i~σ · n̂ sin θ
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2. Dirac notation exercises.

Dirac’s notation for state vectors is extremely useful and we will use it all the

time. The following problems are intended to test your understanding of the

discussion on pages 1-6 – 1-10 of these notes.

(a) Consider some operators acting on a Hilbert space with a resolution of the

identity of the form

1 =
∑
n

|n〉 〈n| .

Recall that the matrix representation of an operator in this basis is Anm =

〈n| Â |m〉. Using Dirac notation, show that the matrix representation of a

product of operators
(
ÂB̂
)
nr

is given by the matrix product of the associ-

ated matrices
∑

mAnmBmr.(
ÂB̂
)
nr

= 〈n|AB |r〉 = 〈n|A1B |r〉 =
∑

m 〈n|A |m〉 〈m|B |r〉 =
∑

mAnmBmr

(b) For a normalized state |a〉 (normalized means 〈a|a〉 = 1), show that the

operator

Pa ≡ |a〉〈a|

is a projector, in the sense that P 2
a = Pa (doing it twice is the same as doing

it once), and Pa = P †a .
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3. Time evolution. Suppose we have a two state system with Hilbert space

spanned by |0〉 , |1〉, the eigenbasis of Z ≡ |0〉〈0| − |1〉〈1|. At time t = 0 we

measure the observable Z and find the answer 1. The system evolves under the

Hamiltonian

H = gX, X ≡ |0〉〈1|+ |1〉〈0|.

After time t, what is the probability that we will get 1 if we measure Z again?

By the axioms of QM, the initial state is |ψ(0)〉 = |0〉, and the state at time t is

|ψ(t)〉 = e−iHt |0〉 .

The eigenvectors of X are |±〉 = 1√
2

(|0〉 ± |1〉). Expanding the initial state in

this basis, we have

|ψ(t)〉 = e−iHt (|+〉+ |−〉) 1√
2

=
(
e−igt |+〉+ eigt |−〉

) 1√
2
.

The amplitude to measure Z = +1 in this state is

〈0|ψ(t)〉 =
1√
2

(
e−igt + eigt

)
and so the probability is

P (t) = cos gt.

This kind of oscillation is generally named after Rabi.

4. Normal matrices.

An operator (or matrix) Â is normal if it satisfies the condition [Â, Â†] = 0.

(a) Show that real symmetric, hermitian, real orthogonal and unitary operators

are normal.

Real symmetric is a special case of hermitian.

Let H be hermitian. [H,H†] = [H,H] = 0

Real orthogonal is a special case of unitary.

Let U be unitary. [U,U †] = UU † − U †U = 1 − 1 = 0

(b) Show that any operator can be written as Â = Ĥ + iĜ where Ĥ, Ĝ are

Hermitian. [Hint: consider the combinations Â+ Â†, Â− Â†.] Show that Â

is normal if and only if [Ĥ, Ĝ] = 0.

Let H = 1
2
(A + A†) and G = 1

2i
(A − A†). By inspection H and G are

hermitian.

The combination H + iG = 1
2
(A+ A†) + 1

2
(A− A†) = A

[A,A†] = [H + iG,H − iG] = [H,−iG] + [iG,H] = 2i[G,H] which is 0 iff

[H,G] = 0
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(c) Show that a normal operator Â admits a spectral representation

Â =
N∑
i=1

λiP̂i

for a set of projectors P̂i, and complex numbers λi.

By the above if A is normal then [H,G] = 0 which allows us to simultane-

ously diagonalize them with the same set of projectors {Pj}. Denote their

respective eigenvalues hj and gj.

A =
∑

j(hj + igj)Pj

5. Clock and shift operators.

Consider an N -dimensional Hilbert space, with orthonormal basis {|n〉 , n =

0, . . . , N − 1}. Consider operators T and U which act on this N -state system by

T |n〉 = |n+ 1〉 , U |n〉 = e
2πin
N |n〉 .

In the definition of T, the label on the ket should be understood as its value

modulo N , so N + n ≡ n (like a clock).

(a) Find the matrix representations of T and U in the basis {|n〉}.

Define ω = e
2πi
N . T =


0 0 · · · 0 1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 and U =


1 0 · · · 0

0 ω · · · 0
...

...
. . .

...

0 0 · · · ωN−1


(b) What are the eigenvalues of U? What are the eigenvalues of its adjoint, U†?

e
2πin
N and e

−2πin
N respectively for n ∈ {0, · · · , N − 1}

(c) Show (using Dirac notation, not matrices) that

UT = e
2πi
N TU.

UT |n〉 = U |n+ 1〉 = e
2πi(n+1)

N |n+ 1〉
TU |n〉 = Te

2πin
N |n〉 = e

2πin
N |n+ 1〉

Comparing the coefficients yields the result above.

(d) From the definition of adjoint, how does T† act, i.e.

T† |n〉 = ?

T † |n〉 = |n− 1〉
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(e) Show that the ‘clock operator’ T is normal – that is, commutes with its

adjoint – and therefore can be diagonalized by a unitary basis rotation.

Consider [T,T†] |n〉 = TT† |n〉 −T†T |n〉 = T |n− 1〉 −T† |n+ 1〉 = 0

(f) Find the eigenvalues and eigenvectors of T.

[Hint: consider states of the form |θ〉 ≡
∑

n e
inθ |n〉.]

Consider T |θ〉 = T |0〉+ Teiθ |1〉+ · · ·+ Tei(N−1)θ |N − 1〉
= |1〉+eiθ |2〉+· · ·+ei(N−1)θ |0〉 = e−iθ |θ〉 where θ must be such that eiNθ = 1

The most general solution to eiNθ = 1 is for θ = 2πj
N

for j ∈ {0, · · · , N − 1}
This defines a basis of |ωj〉 ≡

∑
n ω

j∗n |n〉 where j runs from 0 to N − 1.
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