University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 213/113 Winter 2023
 Assignment 1

Due 11:00am Tuesday, January 17, 2023

1. Too many numbers.

Find the number of qbits the dimension of whose Hilbert space is the number of atoms in the Earth. (It's not very many.) Now imagining diagonalizing a Hamiltonian acting on this space.

2. Warmup for the next problem.

Parametrize the general pure state of a qbit in terms of two real angles. A good way to do this is to find the eigenstates of

$$
\boldsymbol{\sigma}^{n} \equiv \check{n} \cdot \overrightarrow{\boldsymbol{\sigma}} \equiv n_{x} \mathbf{X}+n_{y} \mathbf{Y}+n_{z} \mathbf{Z}
$$

where \check{n} is a unit vector.
Compute the expectation values of \mathbf{X} and \mathbf{Z} in this state, as a function of the angles θ, φ.

3. Mean field theory is product states.

Consider a spin system on a lattice. More specifically, consider the transverse field Ising model:

$$
\mathbf{H}=-J\left(\sum_{\langle x, y\rangle} Z_{x} Z_{y}+g \sum_{x} X_{x}\right) .
$$

Consider the mean field state:

$$
\begin{equation*}
\left|\psi_{\mathrm{MF}}\right\rangle=\otimes_{x}|\psi\rangle_{x}=\otimes_{x}\left(\sum_{s_{x}= \pm} \psi_{s_{x}}\left|s_{x}\right\rangle_{x}\right) \tag{1}
\end{equation*}
$$

i.e., restrict to a product state where the state ψ of each spin is the same.

Write the variational energy for the mean field state, i.e. compute the expectation value of \mathbf{H} in the state $\left|\psi_{\mathrm{MF}}\right\rangle, E(\theta, \varphi) \equiv\left\langle\psi_{\mathrm{MF}}\right| \mathbf{H}\left|\psi_{\mathrm{MF}}\right\rangle$.
Assuming s_{x} is independent of x, minimize $E(\theta, \varphi)$ for each value of the dimensionless parameter g. Find the groundstate magnetization $\langle\psi| Z_{x}|\psi\rangle$ in this approximation, as a function of g.
4. Classical versus quantum circuit sampling. [This is an optional open-ended problem intended as food for thought.]

We showed in lecture that the set of states reachable from a given state by polynomial-depth quantum circuits is a small fraction of the whole Hilbert space. This followed by close analogy with the statement that most boolean functions aren't computable using a polynomial number of gates. The closeness of this analogy leads to the following question:

Let $P_{C}(s, t)$ be the probability of obtaining bit string s when starting with N uniform iid bits and feeding them through a classical circuit C made of t layers of 2-bit gates.

Let

$$
\left.P_{U}(s, t)=\left|\left\langle s^{z}=s\right| U \otimes_{i=1}^{N}\right| s^{x}=1\right\rangle\left.\right|^{2}
$$

where U is a quantum circuit made from t layers of neighboring 2-qbit gates. This is the probability distribution for measurements of σ_{i}^{z} on the state resulting from acting a quantum circuit U on a product of σ^{x} eigenstates.

Show that when $t=0$ the distributions are the same.
Under some assumptions about the scaling of t with N, can we find a $P_{U}(s, t)$ that can never be a $P_{C}(s, t)$?

If we were allowed to measure in the X-basis as well as the Z-basis then it would be easy, because we could for example just design the circuit to produce at time t Bell pairs between spins $2 n-1$ and $2 n$, and do exactly the Bell protocol on them.

Warning: I don't know the answer.

