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1. Brain-warmer. Consider a system of N qbits. Show (convince yourself) that

the operator
N∑
i=1

Xi

written in the eigenbasis of Zi is the adjacency matrix of an N -dimensional hy-

percube.

First of all, the question makes sense since the number of vertices of the N -

dimensional hypercube is 2N , which is the dimension of the Hilbert space on

N qbits. We can represent the vertices by their locations s1 · · · sN , with each

si = ±1. Two vertices of the hypercube share an edge if they differ in only one

coordinate. To see the connection to
∑

iXi, note that |s1 · · · sN〉 provide a basis

(of Z-eigenstates) for the Hilbert space of N qbits. In this basis the operator∑
iXi has nonzero matrix elements only between states whose label differ in one

coordinate (and those nonzero matrix elements are all one).

Alternatively, here’s an inductive argument: The adjacency matrix for the 1-

dimensional case is X =

(
0 1

1 0

)
, which begins the induction. A d-dimensional

hypercube is made by attaching 2 (d− 1)-dimensional hypercubes, according to

the rule

Ad =

(
Ad−1 1d−1
1d−1 Ad−1

)
.

Compare this to the rule for adding an extra X:

∑
i

Xi = 12 ⊗
d−1∑
i=1

Xi +Xd ⊗ 1
⊗(d−1)
2 =

(∑d−1
i=1 Xi 1d−1
1d−1

∑d−1
i=1 Xi

)
.

This fact plays a role in the recent proof of the Sensitivity Conjecture; see here.

2. Classical circuits brain-warmer.
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(a) Show that this circuit adds the input bits (at left) mod two:

XOR =

XOR

XOR

XOR

Here XOR(a, b) ≡ (a + b)mod2. We can proceed by induction on the

number of input bits. The initial step with n = 2 input bits is true since

XOR(x, y) = (x+ y)2. For induction step, the input to the n+ 1st XOR gate

is ((
∑n

i=1 xi)2, xn+1), so the output is indeed (
∑n+1

i=1 xi)2.

(b) [Optional] Construct a circuit with n input bits and one output bit that

gives zero unless exactly one of the bits is one. The ingredients available are

any gates that take two bits to at most two bits.

Here’s a perhaps-overly-complicated solution I found, with some help from

Hans Singh.

First, let’s grant ourselves a gate Tn which takes n bits and outputs 1 if

greater than one bit is 1 (we’ll make it later). Then the following gives a

recursive solution for the gate On which outputs 1 if exactly one bit is 1:

On =

On−1

Tn−1

•

XOR
0

The gate with two labels On−1, Tn−1 has two outputs – the top output is

On−1 and the bottom is Tn−1. The gate indicated by

•
0

is a ‘control-0’ gate – if the top bit is 0, the output is the bottom bit, if the

top bit is 1, the output is zero (and nothing happens to the top bit, which

we can throw away). In quantum language, it is

C0 ≡ |0〉〈0|1 ⊗ 12 + |1〉〈1|1 ⊗ |0〉〈0|2.

The recursion starts by O2 = XOR.
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Now we construct Tn. The construction is also recursive and very similar to

the construction of On. The recursion starts by T2 = AND.

Tn =

NOR

Tn−1

•

OR
0

where OR is 1 if either or both of the inputs are 1 and NOR is OR followed

by NOT (i.e. gives 1 only if all inputs are 0). The NOR on n bits can be

accomplished by

NOR =

OR

OR

OR
X

where X is the NOT gate.

Here’s a more explicit representation. Define a two bit adder

a
+

c

b d

by: d = XOR(a, b), c = AND(a, b). Then the following will work:

+ OR

+ OR

+
X

AND

The top part of the input to the final AND gate makes sure there is not more

than one one being input, and the bottom input makes sure the number of

ones being input is one mod two.

3. Entanglement entropy in a quantum not-so-many-body system made

from spins.

Consider the transverse-field Ising model on a lattice with only two (L = 2) sites,

i = 1, 2, so that the Hilbert space is H = H1 ⊗ H2 where each of H1,2 is a

two-state system, and the Hamiltonian is

H = −J (2Z1Z2 + gX1 + gX2) .
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(a) Find the matrix elements of the Hamiltonian in the eigenbasis of Z1, Z2

hab = 〈sa|H |sb〉

where a, b = 1..N . What is N in terms of the system size L? Check that

your matrix is hermitian.

N = 2L = 4 here.

hab =


|00〉
|01〉
|10〉
|11〉

H (|00〉 , |01〉 , |10〉 , |11〉) =


−2 g g 0

g 2 0 g

g 0 2 g

0 g g −2

 .

(b) Find the eigenvalues of h and plot them as a function of g. (You may wish

to use a computer for this and other parts of this problem.)

(c) Find the the groundstate of h – the eigenvector of the matrix h with the

lowest eigenvalue; find the ground state energy (that lowest eigenvalue).

Write the groundstate as

|Ψ〉 =
N∑
a=1

αa |sa〉 .

For the 2-site case, we can do this by hand, but in preparation for the L > 2

case, let’s just use this mathematica notebook.

(d) The Hilbert space is of the form H1⊗H2 where H1,2 are the Hilbert spaces

of a single spin. Construct the reduced density matrix for the first site in

the groundstate

ρ1 ≡ trH2|Ψ〉〈Ψ|.
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(e) Find the eigenvalues λα of ρ1. Calculate the von Neumann entropy of ρ1,

S(ρ1) = −
∑

α λα log λα as a function of g. What is the numerical value

when g →∞? What about g → 0? Do they agree with your expectations?

(f) [Bonus] Redo this problem with L = 3 sites (or more):

H = −J (Z1Z2 + Z2Z3 + Z3Z1 + gX1 + gX2 + gX2) .

Consider L = 3. There should be three gs in each row and column, since

the Xi operators move the bit string s1s2s3 by Hamming distance one, i.e.

it changes exactly one of the bits. The diagonal entries are 3 (if the spins

are all the same) and −1 for the other six entries. The spectrum looks like:

4. Entanglement entropy in a quantum not-so-many-body system made

from electrons. [This problem is optional but strongly encouraged]1

Consider a system consisting of two electrons, each with spin one-half, and each of

which can occupy either of two sites labelled i = 1, 2. The dynamics is governed

by the following (Hubbard) Hamiltonian:

H = −t
∑
σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
+ U

∑
i

ni↑ni↓.

σ =↑, ↓ labels the electron spin. c and c† are fermion creation and annihilation

operators,

{ciσ, c
†
i′σ′} = δii′δσσ′

and niσ ≡ c†iσciσ is the number operator. The condition that there is a total of

two electrons means we only consider states |ψ〉 with(∑
i,σ

niσ − 2

)
|ψ〉 = 0.

1I got this problem from Tarun Grover.
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The first term is a kinetic energy which allows the electrons to hop between the

two sites. The second term is a potential energy which penalizes the states where

two electrons sit at the same site, by an energy U > 0.

(a) Enumerate a basis of two-electron states (make sure they satisfy the Pauli

exclusion principle).

States with two electrons on two sites are:

{|↑↓, 0〉 , |0, ↑↓〉 , |↑, ↑〉 , |↑, ↓〉 , |↓, ↑〉 , |↓, ↓〉}

where I’ll use the convention that the fermion creation operators are ordered

as written, e.g.:

|↑↓, 0〉 = c†1,↑c
†
1,↓ |0〉 .

(b) The Hamiltonian above has some symmetries. In particular, the total elec-

tron spin in the ẑ direction is conserved. For simplicity, let’s focus on the

states where it is zero, such as c†1↑c
†
2↓ |0〉 where |0〉 is the state with no

electrons, ciσ |0〉 = 0. Find a basis for this subspace, {φa}, a = 1..N .

States with Sz1 + Sz2 = 0 are

{|↑↓, 0〉 , |0, ↑↓〉 , |↑, ↓〉 , |↓, ↑〉}

(c) Find the matrix elements of the Hamiltonian in this basis,

hab ≡ 〈φa|H|φb〉 , a, b = 1..N.

There are some signs we need to worry about in the hopping terms from the

fermionic nature of the electron2. In particular, writingHt ≡ −t
∑

σ=↑,↓

(
c†1σc2σ + c†2σc1σ

)
,

we have e.g.

Ht |↑↓, 0〉 = −t
(
c†2σc1σ

)
c†1↑c

†
1↓ |0〉 (1)

= −t
(
c†2↑c

†
1↓ − c†2↓c

†
1↑

)
|0〉 (2)

= −t (− |↓, ↑〉+ |↑↓〉) = t (|↓, ↑〉 − |↑↓〉) . (3)

Since all the basis states have norm 1 ( e.g. 〈↓, ↑ | ↓, ↑〉 = 1), this gives the

matrix elements

〈↓, ↑|Ht |↑↓, 0〉 = +t, 〈↑, ↓|Ht |↑↓, 0〉 = −t.
2Thanks to Hans Singh for an important correction here.
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Similarly,

Ht |0, ↑↓〉 = −t
(
c†1σc2σ

)
c†2↑c

†
2↓ |0〉 = −t (|↓, ↑〉 − |↑↓〉) . (4)

So in the given basis, we find:

h =


U 0 t −t
0 U −t t

t −t 0 0

−t t 0 0


(d) Find the eigenstate and eigenvalue of the matrix h with the lowest eigen-

value. Write the groundstate as

|Ψ〉 =
N∑
a=1

αa |φa〉 .

For U > 0, the lowest eigenvalue is

E0 =
U

2

1−

√
1 +

(
4t

U

)2


and the associated normalized eigenvector has

αa =
1

2 + 32t2(
U+
√

(4t)2+U2
)2

(
4t

U +
√

(4t)2 + U2
,− 4t

U +
√

(4t)2 + U2
,−1, 1

)
.

(e) Before imposing the global constraints on particle number and Sz, the

Hilbert space can be factored (up to some signs because fermions are weird)

by site: H = H1 ⊗H2, where Hi = span{|0〉 , c†i↑ |0〉 , c
†
i↓ |0〉 , c

†
i↑c
†
i↓ |0〉}. Us-

ing this bipartition, construct the reduced density matrix for the first site

in the groundstate:

ρ1 ≡ trH2 |Ψ〉 〈Ψ| .
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ρ1. = (〈↑↓|1 , 〈0|1 , 〈↑|1 , 〈↓|1) (α1 |↑↓, 0〉+ α2 |0, ↑↓〉+ α3 |↑, ↓〉+ α4 |↓, ↑〉)

· (α?1 〈↑↓, 0|+ α?2 〈0, ↑↓|+ α?3 〈↑, ↓|+ α?4 〈↓, ↑|)


|↑↓〉1
|0〉1
|↑〉1
|↓〉1



=
(
α2 |0〉1 , |α1|2 |↑↓〉1 , |α4|2 |↓〉1 , |α3|2 |↑〉1

)


α?2 〈0|
α?2 〈↑↓|1
α?4 〈↓|1
α?3 〈↑|1

 (5)

= |α2|2|0〉〈0|+ |α1|2| ↑↓〉〈↑↓ |+ |α4|2| ↓〉〈↓ |+ |α3|2| ↑〉〈↑ |. (6)

(f) Find the eigenvalues λα of ρ1. Calculate the von Neumann entropy of ρ1,

S(ρ1) = −
∑

α λα log λα as a function of U/t. What is the numerical value

when U/t→∞?

Using the form of αa, the density matrix is of the form

ρ1 = Ndiag (a, a, 1, 1) ,

with a = 4t

U+
√

(4t)2+U2
. trρ = 1 then determines N = 1

2+2a
. So the eigenval-

ues are a
2+2a

and 1
2+2a

. The von Neumann entropy is

S1 = −trρ1 log ρ1 = 2

(
a

2 + 2a
log

(
a

2 + 2a

)
+

1

2 + 2a
log

(
1

2 + 2a

))
.

It looks like this:

20 40 60 80 100

U

t

1.2

1.4

1.6

1.8

2.0

S1, Log[2]=1
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Since a→ 0 as U/t→∞, this approaches

S1
U�t→ log 2 = 1.

This entropy reflects the fact that in this limit, the groundstate is degenerate

between the two states with one particle per site: |↑, ↓〉 and |↓, ↑〉.

(g) Super-Exchange. Go back to the beginning and consider the limit U � t.

What are the groundstates when U/t → ∞, so that we may completely

ignore the hopping term?

Let us consider the case where we have N sites and N electrons, instead of

just N = 2. In the limit U/t → ∞, we must have exactly one electron per

site, since if we had no electrons at any site, we would have to have more

than one at some other site, which would cost large energy U . So there is a

single spin-half at each site.

At second order in degenerate perturbation theory, find the effective Hamil-

tonian which splits the degeneracy for small but nonzero t/U . Write the

answer in terms of the spin operator

~Si ≡
1

2
c†iσ~σσσ′ciσ′ .

The sign is important!

The effective Hamiltonian at second order acting on the degenerate subspace

is

H = P
∑
i

H |i〉 〈i|H
E0 − Ei

P

where P is a projector onto the degenerate subspace with energy E0 and i

runs over ‘virtual’ states outside the subspace (note that
∑

i |i〉 〈i| = 1−P ).

The most important (lowest energy) virtual intermediate state comes from

hopping a single electron to a neighboring site. This virtual state has energy

Ei−E0 = U above the groundstate space. The hopping matrix elements are

each (−t). The tricky bit is that if the neighboring electrons are in the same

spin state then the hopping matrix element vanishes by the Pauli principle,

since the hopping term doesn’t change the spin. Since the perturbation by

finite hopping term respects the SU(2) spin rotation symmetry generated

by
∑

i Si ≡
∑

i c
†
i~σci, we must be able to write the effective hamiltonian in

terms of SU(2) invariant combinations of these operators Therefore

H = −ct
2

U

∑
〈ij〉

~Si · ~Sj (7)
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for some constant c. The minus sign is ubiquitous in second-order pertur-

bation theory (since the excited state has higher energy than the ground

state).

But actually c < 0! To see this we can compute just a few of the terms in

the case of L = 2.

Heff =
1

−U
Ht (| ↑↓, 0〉〈↑↓, 0|+ |0, ↑↓〉〈0, ↑↓ |)Ht (8)

(3),(4)
= − t

2

U
[(|↓, ↑〉 − |↑, ↓〉) (〈↓, ↑| − 〈↑, ↓|) + (|↑, ↓〉 − |↓, ↑〉) (〈↑, ↓| − 〈↓, ↑|)]

(9)

= −2t2

U
(| ↑, ↓〉〈↓, ↑ |+ h.c.− | ↑, ↓〉〈↑, ↓ | − | ↓, ↑〉〈↓, ↑ |) . (10)

Now let’s compare to (7).

Sz1S
z
2 = | ↑, ↑〉〈↑, ↑ |+| ↓, ↓〉〈↓, ↓ |−| ↑, ↓〉〈↑, ↓ |−| ↓, ↑〉〈↓, ↑ | = 1−2 (| ↑, ↓〉〈↑, ↓ |+ | ↓, ↑〉〈↓, ↑ |) .

And the off-diagonal terms are

Sx1S
x
2 + Sy1S

y
2 = 2S+

1 S
−
2 + h.c. = 2 (| ↑, ↓〉〈↓, ↑ |+ | ↓, ↑〉〈↑, ↓ |) .

Comparing these expressions, we find c = −4.

Therefore the groundstate for two sites at U � t is a singlet, i.e. a Bell pair
1√
2

(|↑↓〉 − |↓↑〉) which is maximally entangled, in the sense that tr1 |ψ〉 〈ψ| =
1
2
1, and hence the entanglement entropy is S = 1.

(h) Redo all the previous parts for the case where the two particles are spin-half

bosons,

ciσ  biσ, [biσ,b
†
i′σ′ ] = δii′δσσ′ .

Nearly everything is the same, except the wavefunctions are symmetric, so

the signs in the hopping matrix elements are missing. The missing relative

sign in the hopping matrix elements means that the spin-spin interaction

will be ferromagnetic. If we had L > 2, it would matter that it is no longer

true that hopping is blocked when the neighboring spins are in the same

state; this adds an extra term to the effective hamiltonian proportional to

the identity operator. Also, the calculation would be different if we left the

mz = 0 sector, since then states like
b†2↑1√
2
|0〉 would contribute.
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