University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 213 Winter 2023
 Assignment 5

Due 11:00am Monday, February 14, 2023

1. Error rate per bit. Estimate the probability of failing to decode a message sent through a binary symmetric channel with error rate q per bit, using the Hamming $[7,4]$ code. Note that there is a distinction between the probability of having an error in the decoded string, and an error in a given bit of the message (it doesn't matter if some of the check bits are misconstrued).

2. Control-X brainwarmer.

Show that the operator control-X can be written variously as

$$
\mathrm{CX}_{B A}=|0\rangle\left\langle\left. 0\right|_{B} \otimes \mathbb{1}_{A}+\mid 1\right\rangle\left\langle\left. 1\right|_{B} \otimes \mathbf{X}_{A}=\mathbf{X}_{A}^{\frac{1}{2}\left(1-\mathbf{Z}_{B}\right)}=e^{\frac{\mathrm{i} \pi}{4}\left(1-\mathbf{Z}_{B}\right)\left(1-\mathbf{X}_{A}\right)} .\right.
$$

3. Density matrix exercises.

(a) Show that the most general density matrix for a single qbit lies in the Bloch ball, i.e. is of the form

$$
\boldsymbol{\rho}_{v}=\frac{1}{2}(\mathbb{1}+\vec{v} \cdot \overrightarrow{\boldsymbol{\sigma}}), \quad \sum_{i} v_{i}^{2} \leq 1 .
$$

Find the determinant, trace, and von Neumann entropy of $\boldsymbol{\rho}_{v}$.
(b) A single qbit state has $\langle\mathbf{X}\rangle=s$. Find the most general forms for the corresponding density operator with the minimum and maximum von Neumann entropy. (Hint: the Bloch ball is your friend.)
(c) Show that the purity of a density matrix $\pi[\boldsymbol{\rho}] \equiv \operatorname{tr} \boldsymbol{\rho}^{2}$ satisfies $\pi[\boldsymbol{\rho}] \leq 1$ with saturation only if $\boldsymbol{\rho}$ is pure.
(d) Show from the definition that the quantum relative entropy satisfies the following

$$
\begin{gather*}
D\left(\boldsymbol{\rho}_{A} \otimes \boldsymbol{\rho}_{B} \| \boldsymbol{\sigma}_{A} \otimes \boldsymbol{\sigma}_{B}\right)=D\left(\boldsymbol{\rho}_{A} \| \boldsymbol{\sigma}_{A}\right)+D\left(\boldsymbol{\rho}_{B} \| \boldsymbol{\sigma}_{B}\right) . \tag{1}\\
\sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\rho}\right)=\sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\sigma}_{\mathrm{av}}\right)+D\left(\boldsymbol{\sigma}_{\mathrm{av}} \| \boldsymbol{\rho}\right) \tag{2}\\
D\left(\boldsymbol{\sigma}_{\mathrm{av}} \| \boldsymbol{\rho}\right) \leq \sum_{i} p_{i} D\left(\boldsymbol{\sigma}_{i} \| \boldsymbol{\rho}\right) \tag{3}
\end{gather*}
$$

for any probability distribution $\left\{p_{i}\right\}$ and density matrices $\boldsymbol{\rho}, \boldsymbol{\sigma}_{i}$, and where $\boldsymbol{\sigma}_{\mathrm{av}} \equiv \sum_{i} p_{i} \boldsymbol{\sigma}_{i}$.
4. Thermal density matrix. Suppose given a Hamiltonian H. In lecture we showed that the thermal density matrix $\boldsymbol{\rho}_{T} \equiv \frac{e^{-\frac{H}{k_{B} T}}}{Z}$ has the maximum von Neumann entropy $S_{v N}$ of any state with the same expected energy. Show that if instead we are given a fixed temperature T, the thermal density matrix minimizes the free energy functional

$$
F_{T}[\boldsymbol{\rho}] \equiv \operatorname{tr} \boldsymbol{\rho} H-T S_{v N}[\boldsymbol{\rho}] .
$$

5. Distinguishability of distributions. Suppose we sample N times a distribution P on a binary variable with $\left(p_{0}, p_{1}\right)=(p, 1-p)$. What is the probability that we mistake the distribution for Q with probabilities $(q, 1-q)$?

Hint: the expected number of zeros $\left\langle n_{0}\right\rangle_{P}$ is $N p$. The probability that we get it wrong is the probability that we get $N q$ zeros instead. Show that

$$
\operatorname{Prob}\left(n_{0}=N q \mid P\right) \simeq 2^{-N D(Q \| P)}
$$

where $D(Q \| P)$ is the relative entropy, and the approximation is Stirling's.

