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1. Copying classical information is OK. Construct a linear operator O on a

system of two qbits that acts as follows on the computational basis states of the

first qbit:

O |0〉 ⊗ |a〉 = |0〉 ⊗ |0〉 , O |1〉 ⊗ |a〉 = |1〉 ⊗ |1〉 ,

for any computational-basis state |a〉 of the second qbit.

What is O (cos θ |0〉+ sin θ |1〉)⊗ |a〉 ?

Can this operator O be unitary? Find a unitary operator U that acts as follows:

U |0〉 ⊗ |0〉 = |0〉 ⊗ |0〉 , U |1〉 ⊗ |0〉 = |1〉 ⊗ |1〉 ,

but acts in some other way when the second register is in the state |1〉.

[We can think of the operator U as copying classical information (onto a known

register): if we are forced (e.g. by decoherence) to remain in the computational

basis, the information in the first qbit is just a classical bit; the operator O copies

this classical bit into the second register. This shows that the quantum no-cloning

theorem does not forbid the cloning of classical information.]

Extra credit: show that it is not possible to construct such a linear operator that

acts as above for arbitrary states |a〉 of the second qbit.

2. Brain-warmer: Entanglement cannot be created locally. Consider a bi-

partite hilbert space H = HA ⊗ HB. Define a local unitary to be an operator

of the form UA ⊗UB where UA,B acts only on HA,B. These are the operations

that can be done by actors with access only to A or B. Show that by acting on

a state of H with a local unitary we cannot change the Schmidt number or the

entanglement entropy of either factor. Consider both the case of a pure state

of H and a mixed state of H; note that the action of a unitary U on a density

matrix ρ is

ρ→ UρU†.

[We conclude from this that to create an entangled state from an unentangled

state, we must bring the two subsystems together and let them interact, resulting

in a more general unitary evolution than a local unitary.]
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3. Find the spectrum of the operator

d∑
i,j=1

|ji〉〈ij|

acting on two d-state systems. (This operator is the image of the maximally

entangled state
∑d

ij=1 |ii〉〈jj| under the partial transpose operation T ⊗ 1B.)

4. Brainwarmers on Kraus operators.

(a) Check that the Kraus operators

Ki = 〈i|U |0〉

(where U is a unitary on A ⊗ Ā, {|i〉} is an ON basis of Ā, and |0〉 is a

reference state in Ā) satisfy the condition∑
i

K†
iKi = 1A (1)

(b) Check that the condition (1) implies that the Kraus evolution ρ→
∑

iKiρK
†
i

preserves the trace.

(c) Find a set of Kraus operators for the erasure (or reset) channel that takes

ρ 7→ |0〉〈0| for every ρ. Check that they satisfy (1).

(d) Stationary states of unital channels. Check that the unital condition∑
iKiK

†
i = 1 implies that the uniform density matrix u ≡ 1 1

|H| is a fixed

point of the associated quantum channel, E , i.e.

E(u) = u.

5. Phase-damping channel.

(a) Show that the Kraus operators given in lecture indeed reproduce the action

of the phase-damping channel.

(b) Show that the Kraus operators given in lecture indeed result from the given

unitary action UAE on the combined system and environment.

6. Amplitude-damping channel. This is a very simple model for a two-level

atom, coupled to an environment in the form of a (crude rendering of a) radiation

field.

The atom has a groundstate |0〉A; if it starts in this state, it stays in this state,

and the radiation field stays in its groundstate |0〉E (zero photons). If the atom
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starts in the excited state |1〉A, it has some probability p per time dt to return to

the groundstate and emit a photon, exciting the environment into the state |1〉E
(one photon). This is described by the time evolution

UAE |0〉A ⊗ |0〉E = |0〉A ⊗ |0〉E

UAE |1〉A ⊗ |0〉E =
√

1− p |1〉A ⊗ |0〉E +
√
p |0〉A ⊗ |1〉E .

(a) Show that the evolution of the atom’s density matrix can be written in terms

of two Kraus operators Ki, find those operators and show that they satisfy∑
iK

†
iKi = 1atom.

(b) Assuming that the environment is forgetful and resets to |0〉E after each

time step dt, find the fate of the density matrix after time t = ndt for late

times n� 1, i.e. upon repeated application of the channel.

(c) Evaluate the purity trρ2
n of the nth iterate. (Recall that the purity is 1 IFF

the state is pure.)

7. Phase-flipping decoherence channel. Consider the following model of de-

coherence on an N -state Hilbert space, with basis {|k〉 , k = 1..N}.

Define the unitary operator

Uα ≡
∑
k

αk |k〉 〈k|

where αk is an N -component vector of signs, ±1 – it flips the signs of some of

the basis states. There are 2N distinct such operators.

Imagine that interactions with the environment act on any state of the system

with the operator Uα, for some α, chosen randomly (with uniform probability

from the 2N choices).

[Hint: If you wish, set N = 2.]

(a) Warmup question: If the initial state is |ψ〉, what is the probability that the

resulting output state is Uα |ψ〉?

(b) Write an expression for the resulting density matrix, D(ρ), in terms of ρ.

(c) Think of D as a superoperator, an operator on density matrices. How does

D act on a density matrix which is diagonal in the given basis,

ρdiagonal =
∑
k

pk |k〉 〈k| ?
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(d) The most general initial density matrix is not diagonal in the k-basis:

ρgeneral =
∑
kl

ρkl |k〉 〈l| .

what does D do to the off-diagonal elements of the density matrix?

8. Turtles all the way down. [optional, open-ended]

A question you may have about our discussion of polarization-damping as a model

of decoherence is: why does the environment reset to the reference state |0〉E?

We can postpone the question a bit by coupling the environment to its own envi-

ronment, according to an amplitude damping channel. On the previous problem

set, you saw that the result of the repeated action of such a channel can set

ρE = |0〉 〈0|. This statement in turn assumes a forgetful meta-environment. A

thermodynamic limit is required to postpone the question indefinitely. Construct

such a thermodynamic limit.
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