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Physics 213 Fall 2023
Assignment 7 —  Solutions

Due 11:00am Tuesday, February 28, 2023

1. Brainwarmer. Check that the Holevo quantity X(pe,pa) = SO, Papa) —
Y uPaS(pa) can be written as a relative entropy

X(Pa; pa) = D(pasllpa @ pp)
with pap = >, Papa ® |a)(a| where B = span{|a)} and the |a) are orthonormal.

2. Shannon entropy is concave. Consider a collection of probability distribu-
tions 7* on a random variable X, so > 7% = 1,7¢ > 0,Vz. Then a convex

(67

combination of these m,, = > pom® is also a probability distribution on X.

Show that the entropy of the average distribution is larger than the average of

H(may) > > paH(r

The most direct method is to note that —xlogx is a concave function, so that

the entropies:

Shannon entropy is concave.

A slightly less direct method is to notice that
H(m.) = Z Zpaﬂ log ppTy ) (1)

and by concavity of the logarithm — log (pmrf) > — > 5pplog > — s log 7l >
—log m¢ for any a. Therefore

H (7o) = ZZpoﬂr log PR, ) (2)
— Z Zpaﬂ'w log s = ZPaH(WQ)- (3)

Another method is to relate the difference to a relative entropy, as suggested by
the previous problem:

H(Tay) = ZZpoﬂr log ppTY ) (4)
P
=S St lon ()~ 30 Y o (pj—) (5)

T

- Zpa 7To¢ - 7ravH7r > Zpa (6)



using D(+||-) > 0.

. Making a Bell pair from a product state. Find the output of the following
quantum circuit (time goes to the right here and in the following):

0y ——P—

0) {H]——

Here H = \/AQ (X + Z) is a Hadamard gate, and the two-gbit gate is the CX gate

as in lecture.

Use 1 and 2 to label the top and bottom qbits respectively. The control X
distinguishes control and target bits:

X = [0) (0], 1 + [1) (1], X:.
Then the circuit is doing

. Quantum Teleportation. Convince yourself that it is possible to transmit an
unknown state of a gbit by sending two classical bits to someone with whom you
share a Bell pair, using the following circuit:

) HHAA
0) 4 A

0) —{ H] xXHz %)

Time goes from left to right here; you should recognize the first two operations

%
A\
'

from the previous problem. Imagine that the register on the bottom line is
separated in space from the top two after this point. The measurement boxes
indicate measurements of Z; the double lines indicate that the outcomes of these
measurements s = 1,0 (this is the sending of the two classical bits) determine
whether or not (respectively) to act with the indicated gate.

A solution to this problem and the next can be found on pages 1-58 — 1-60 here.
But here is a better explanation.

A nice way to think about the measurement step (that I learned from Ting-Chun
(David) Lin and Yu-Hsueh Chen) is the following. For each possible outcome of


http://physics.ucsd.edu/~mcgreevy/w15/130C-2015-chapter01.pdf

the measurement, just feed that state into the circuit:

) [ H | /i)
10) P—>D 17)
0) —{H] X 1Y)

We can also use the previous problem to simplify the circuit. The first two gates
just prepare a maximally-entangled state between B and C:

[4)

[+)

The step highlighted in the red box is explained here:

muad v

:l U—j——l7 ) :—'\-E*B—D

K->

_ —=o
Jelo——> P

Here T used the algebra between X, Z and CX, which is quite useful:

CX1221 = Z5CXp9, XoCXyp = CXp22s.



5. Quantum Dense Coding. Find a circuit which does the reverse of the pre-
vious: by sending an unknown gbit to someone with whom you share a Bell
pair, transmit two classical bits. (Hint: basically just reverse everything in the
previous problem.)

Using the same notation as on the previous problem, a circuit diagram for the
solution (credit to Ziyi Zhao for drawing it this way) looks like:
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After the first two gates, we’ve produced a Bell pair between gbits 1 and 2. Acting
with Z72 X7! gives

V2[T) = X1 Z5 (|00) + |11)) = (—1)"52 [5,0) + (—1)* [5,1)..
Acting with CX;5 gives
V2([Ws) = CXpp |[T1) = (—1)™2 [sy81)+(—1)%%2 |5181) = ((—1)"2 |s1) + (—1)" [5,))®]s1) .

Acting with H; gives

Hy [W) = %((—1)81” (10) + (=1 [1)) + (=)= (|0) + (=1)" [1))) @ |s1) (7)
= % (D)7 + (=1)72) [0) + (=)= + (1)) D] @]s1)  (8)
= % [(L+ (=1))[0) + (1 + (1)) [1)] @ |s1) (9)
= |s2) ® [s1) (10)

A simple check is that if s; = s9 = 0, the circuit is HCXCXH = HH = 1.

6. Teleportation for qdits. [optional]

Show that it is possible to teleport a state |£) , € Ha, |A| = d from A to B using
the maximally-entangled state

d
1
’(I)>AB ﬁ ; ’nn>AB :

4



Hint: Consider the clock and shift operators

d
ZEZ|n><n|w”,wE T EZn+1

where the argument of the ket is to be understood mod d. Show that these
generalize some of the properties of the Pauli X and Z in that they are unitary
and that they satisfy the (discrete) Heisenberg algebra

XZ =aZX

for some c-number a which you should determine.
7. Conditional entropy in terms of relative entropy.

(a) Show that the conditional entropy can be written as
S(A[C) = =D(pacllla @ pc). (11)

(b) Does the relation (11) imply that the conditional entropy can never be pos-
itive? Find a proof or a counterexample.

The correct answer is ‘no’: the positivity of the relative entropy D(p||c) > 0
depends on p, o being normalized density matrices. The object 14 ® p¢ is
not a normalized density matrix on AC.

The conditional entropy can be positive, as it is for any classical distribution

on AC
pPAC = Zpac‘acxac’a

ac

for example. Another counterexample is pac = pa ® pc, where S(A|C) =
S(AC) — S(C)=S(A) > 0.

8. It’s a trap. Is the mutual information convex?
?
[Zapapa(A : B) S Zpa[pa<A : B)

It’s a relative entropy, and the relative entropy is jointly convex in its arguments,
right? Find a proof or a counterexample.

A counterexample is a state of the form

p= pep" =Y peleckcc]



where the states |cc) are orthonormal product states on AB. Then S,(A) =
Spe(B) = Spe(AB) = 0,50 Y. pelpe(A: B) = 0. On the other hand Sa (>, pe|cc)ce| =
SO, peleXcel) = H(p), and Sp = Sap = H(p) as well, so [,(A: B) = H(p) is

nonzero.

The joint convexity of the relative entropy says that for p = > p.p%p

I,(A: B) = D(pap|lpa ® pp) (12)
= DY pepipll D pers ® D peph) (13)
= DY peperpapll D pepeps ® p) (14)
joint convexity . . o

< chpdD(pABHpA ® pi) (15)

Y pepe <trp23 log pp — trpplog pf @ p%) (16)

- chtrpcAB log pi&B - chtrpilpcA - chpc’trIOCB 10g IO% (17>
=Y pe (trpp log plyp — trpfy log pfy—trpfy log pf; + trpf log ply) — Y pepertrpfy log pi

(18)

= ch[pc<14 : B) + chpc/ <trp§3 log p§ — trpG log p‘é) (19)

= S (A B+ S pepe Do 105, (20)

The extra term in (20) is strictly positive. Moreover, the relative entropy D(p||o)
is unbounded (it is infinity when p has support where o does not).

This problem is dedicated to Tarun Grover.



