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1. Brainwarmer. Check that the Holevo quantity χ(pa, ρa) = S(
∑

a paρa) −∑
a paS(ρa) can be written as a relative entropy

χ(pa, ρa) = D(ρAB||ρA ⊗ ρB)

with ρAB ≡
∑

a paρa ⊗ |a〉〈a| where B = span{|a〉} and the |a〉 are orthonormal.

2. Shannon entropy is concave. Consider a collection of probability distribu-

tions πα on a random variable X, so
∑

x π
α
x = 1, παx ≥ 0, ∀x. Then a convex

combination of these πav ≡
∑

α pαπ
α is also a probability distribution on X.

Show that the entropy of the average distribution is larger than the average of

the entropies:

H(πav) ≥
∑
α

pαH(πα).

The most direct method is to note that −x log x is a concave function, so that

Shannon entropy is concave.

A slightly less direct method is to notice that

H(πav) = −
∑
x

∑
α

pαπ
α
x log

(
pβπ

β
x

)
(1)

and by concavity of the logarithm− log
(
pβπ

β
x

)
≥ −

∑
β pβ log πβx ≥ −

∑
β log πβx ≥

− log παx for any α. Therefore

H(πav) = −
∑
x

∑
α

pαπ
α
x log

(
pβπ

β
x

)
(2)

≥ −
∑
x

∑
α

pαπ
α
x log παx =

∑
α

pαH(πα). (3)

Another method is to relate the difference to a relative entropy, as suggested by

the previous problem:

H(πav) = −
∑
x

∑
α

pαπ
α
x log

(
pβπ

β
x

)
(4)

= −
∑
x

∑
α

pαπ
α
x log (παx )−

∑
x

∑
α

pαπ
α
x log

(
pβπ

β
x

παx

)
(5)

=
∑
α

pαH(πα)−D(πav||πα) ≥
∑
α

pαH(πα) (6)
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using D(·||·) ≥ 0.

3. Making a Bell pair from a product state. Find the output of the following

quantum circuit (time goes to the right here and in the following):

|0〉
|0〉 H •

Here H = 1√
2

(X + Z) is a Hadamard gate, and the two-qbit gate is the CX gate

as in lecture.

Use 1 and 2 to label the top and bottom qbits respectively. The control X

distinguishes control and target bits:

CXct = |0〉 〈0|c 1t + |1〉 〈1|cXt.

Then the circuit is doing

CX21 ·H2 |00〉 = CX21

(
|00〉+ |01〉√

2

)
=

1√
2

(|00〉+ |11〉) .

4. Quantum Teleportation. Convince yourself that it is possible to transmit an

unknown state of a qbit by sending two classical bits to someone with whom you

share a Bell pair, using the following circuit:

|ψ〉 • H •

|0〉

|0〉 H • X Z |ψ〉
Time goes from left to right here; you should recognize the first two operations

from the previous problem. Imagine that the register on the bottom line is

separated in space from the top two after this point. The measurement boxes

indicate measurements of Z; the double lines indicate that the outcomes of these

measurements s = 1, 0 (this is the sending of the two classical bits) determine

whether or not (respectively) to act with the indicated gate.

A solution to this problem and the next can be found on pages 1-58 – 1-60 here.

But here is a better explanation.

A nice way to think about the measurement step (that I learned from Ting-Chun

(David) Lin and Yu-Hsueh Chen) is the following. For each possible outcome of
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the measurement, just feed that state into the circuit:

|ψ〉 • H |i〉

|0〉 |j〉

|0〉 H • Xj Zi |ψ〉

We can also use the previous problem to simplify the circuit. The first two gates

just prepare a maximally-entangled state between B and C:

The step highlighted in the red box is explained here:

Here I used the algebra between X,Z and CX, which is quite useful:

CX12Z1 = Z2CX12, X2CX12 = CX12Z2.
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5. Quantum Dense Coding. Find a circuit which does the reverse of the pre-

vious: by sending an unknown qbit to someone with whom you share a Bell

pair, transmit two classical bits. (Hint: basically just reverse everything in the

previous problem.)

Using the same notation as on the previous problem, a circuit diagram for the

solution (credit to Ziyi Zhao for drawing it this way) looks like:

After the first two gates, we’ve produced a Bell pair between qbits 1 and 2. Acting

with Zs2
1 X

s1
1 gives

√
2 |Ψ1〉 = Xs1

1 Z
s2
1 (|00〉+ |11〉) = (−1)s1s2 |s10〉+ (−1)s̄1s2 |s̄11〉 .

Acting with CX12 gives

√
2 |Ψ2〉 = CX12 |Ψ1〉 = (−1)s1s2 |s1s1〉+(−1)s̄1s2 |s̄1s1〉 = ((−1)s1s2 |s1〉+ (−1)s̄1s2 |s̄1〉)⊗|s1〉 .

Acting with H1 gives

H1 |Ψ2〉 =
1

2
((−1)s1s2 (|0〉+ (−1)s1 |1〉) + (−1)s̄1s2 (|0〉+ (−1)s̄1 |1〉))⊗ |s1〉 (7)

=
1

2
[((−1)s1s2 + (−1)s̄1s2) |0〉+ ((−1)s1s̄2 + (−1)s̄1s̄2) |1〉]⊗ |s1〉 (8)

=
1

2
[(1 + (−1)s2) |0〉+ (1 + (−1)s̄2) |1〉]⊗ |s1〉 (9)

= |s2〉 ⊗ |s1〉 (10)

A simple check is that if s1 = s2 = 0, the circuit is HCXCXH = HH = 1.

6. Teleportation for qdits. [optional]

Show that it is possible to teleport a state |ξ〉A ∈ HA, |A| ≡ d from A to B using

the maximally-entangled state

|Φ〉AB ≡
1√
d

d∑
n=1

|nn〉AB .
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Hint: Consider the clock and shift operators

Z ≡
d∑

n=1

|n〉 〈n|ωn, ω ≡ e
2πi
d , X ≡

d∑
n=1

|n+ 1〉 〈n|

where the argument of the ket is to be understood mod d. Show that these

generalize some of the properties of the Pauli X and Z in that they are unitary

and that they satisfy the (discrete) Heisenberg algebra

XZ = aZX

for some c-number a which you should determine.

7. Conditional entropy in terms of relative entropy.

(a) Show that the conditional entropy can be written as

S(A|C) = −D(ρAC ||1A ⊗ ρC). (11)

(b) Does the relation (11) imply that the conditional entropy can never be pos-

itive? Find a proof or a counterexample.

The correct answer is ‘no’: the positivity of the relative entropy D(ρ||σ) ≥ 0

depends on ρ, σ being normalized density matrices. The object 1A ⊗ ρC is

not a normalized density matrix on AC.

The conditional entropy can be positive, as it is for any classical distribution

on AC

ρAC =
∑
ac

pac|ac〉〈ac|,

for example. Another counterexample is ρAC = ρA ⊗ ρC , where S(A|C) =

S(AC)− S(C) = S(A) ≥ 0.

8. It’s a trap. Is the mutual information convex?

I∑
a paρa

(A : B)
?

≤
∑
a

paIρa(A : B)

It’s a relative entropy, and the relative entropy is jointly convex in its arguments,

right? Find a proof or a counterexample.

A counterexample is a state of the form

ρ =
∑
c

pcρ
c =

∑
c

pc|cc〉〈cc|
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where the states |cc〉 are orthonormal product states on AB. Then Sρc(A) =

Sρc(B) = Sρc(AB) = 0, so
∑

c pcIρc(A : B) = 0. On the other hand SA(
∑

c pc|cc〉〈cc| =
S(
∑

c pc|c〉〈c|) = H(p), and SB = SAB = H(p) as well, so Iρ(A : B) = H(p) is

nonzero.

The joint convexity of the relative entropy says that for ρ =
∑

c pcρ
c
AB

Iρ(A : B) = D(ρAB||ρA ⊗ ρB) (12)

= D(
∑
c

pcρ
c
AB||

∑
c

pcρ
c
A ⊗

∑
c′

pc′ρ
c′

B) (13)

= D(
∑
cc′

pcpc′ρ
c
AB||

∑
cc′

pcpc′ρ
c
A ⊗ ρc

′

B) (14)

joint convexity

≤
∑
cc′

pcpc′D(ρcAB||ρcA ⊗ ρc
′

B) (15)

−
∑
cc′

pcpc′
(

trρcAB log ρcAB − trρcAB log ρcA ⊗ ρc
′

B

)
(16)

=
∑
c

pctrρ
c
AB log ρcAB −

∑
c

pctrρ
c
Aρ

c
A −

∑
cc′

pcpc′trρ
c
B log ρc

′

B (17)

=
∑
c

pc (trρcAB log ρcAB − trρcA log ρcA−trρcB log ρcB + trρcB log ρcB)−
∑
cc′

pcpc′trρ
c
B log ρc

′

B

(18)

=
∑
c

pcIρc(A : B) +
∑
cc′

pcpc′
(

trρcB log ρcB − trρcB log ρc
′

B

)
(19)

=
∑
c

pcIρc(A : B) +
∑
cc′

pcpc′D(ρcB||ρc
′

B). (20)

The extra term in (20) is strictly positive. Moreover, the relative entropy D(ρ||σ)

is unbounded (it is infinity when ρ has support where σ does not).

This problem is dedicated to Tarun Grover.
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