
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 213 Winter 2023
Assignment 8 – Solutions

Due 11:00am, Tuesday March 7, 2023

Note that I’ve made most of the problems optional so that you have time to think

about the final paper.

1. Brain-warmer. [optional] Let Z =
∑

j |j〉 〈j|ωj be the clock operator on a

d-dimensional Hilbert space, ω ≡ e2πi/d. Show that Kj = Zj/
√
d are Kraus oper-

ators for the diagonal-part channel. That is: a density matrix can be scrambled

(as defined in lecture) by only d operators.

ρ 7→ 1

d

∑
j

ZjρZ−j

in the Z-basis, has ρjj on the diagonal and

d∑
j=0

ωj = 0

on the off-diagonal.

2. Equivalent Kraus representations. [optional] Show that {K} ' {K̃} produce

the same channel iff Kk =
∑

l uklK̃l where ukl is a unitary matrix in the kl indices.

Open-ended bonus problem: find invariants of {K} which label equivalence classes

under the above equivalence relation.

We’re going to substitute in Kk =
∑

l uklK̃l and K†k =
∑

l′ u
?
kl′K̃

†
l′ into

ρ 7→
∑
k

KkρK
†
k =

∑
k,l,l′

uklK̃lρu
?
kl′K̃

†
l′ =

∑
ll′

K̃lρK
†
l′

∑
k

ukl
(
u†
)
l′k︸ ︷︷ ︸

=δll′

=
∑
l

K̃lρK̃
†
l .

3. The entropy exchange. [optional] [Petz’ book] Many of the quantum channels

we considered in previous homeworks have the property that they increase the

von Neumann entropy of their victim. An exception is the amplitude damping

channel, which makes the state more pure. An implementation of a second law

of thermodynamics would require us to identify a total entropy that probably

increases.
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We showed that any channel can be regarded as unitary evolution on a larger

space (followed by partial trace), and unitary evolution doesn’t change the en-

tropy (of the whole system) at all. Even without introducing the environment

explicitly, the Kraus operators give us a way to keep track of the entropy:

Suppose a CPTP map E : End(A)→ End(B) has Kraus representation {Ki}i=1..r.

For any density matrix on A, let

ςij ≡ trKiρK
†
j .

(Recall that the index on the Kraus operators comes from a basis on the envi-

ronment.)

(a) Show that ςij is positive and has unit trace as a matrix in the ij space. (So

it can be regarded as a density matrix on that space.)

Unit trace follows from cyclicity of the trace and
∑

iK
†
iKi = 1. To show

that ς is positive consider an arbitrary diagonal matrix element:

v?i ςijvj = v?i trKiρK
†
jvj (1)

= tr

(∑
i

v?iKi

)
ρ

(∑
j

vjK
†
j

)
(2)

= trXρX† =
∑
a

〈a|XρX† |a〉 =
∑
a′

〈a′| ρ |a′〉 ≥ 0. (3)

(b) The von Neumann entropy of ςij, S(ς) = −trς log ς is called the entropy

exchange. Show that S(ς) is preserved by the equivalence relation between

Kraus representations of E .

It’s independent of the choice of basis on the environment.

(c) Show (by Stinespring dilation) that ς is the reduced density matrix of the

environment after the action of the channel, and therefore that the entropy

exchange is equal to the entropy of the environment after the action of the

channel.

Dilation says we can realize the channel as unitary evolution U on a larger

space AE, in which case Ki = E 〈i|U |0〉E. Therefore

ςij = trAKiρK
†
j = trA 〈i|Uρ⊗|0〉〈0|EU † |j〉 = E 〈i|

(
trAUρ⊗ |0〉〈0|EU †

)
|j〉E .
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4. Isometries from density matrices. [optional] Given a positive density matrix

(no zero eigenvalues) on a bipartite system ρAB, show that the following object

V ρ
A→BB?A (time goes up in the picture):

V ρ
A→BB?A =

ρ
− 1

2
A

ρ
1
2
AB

A

AB

BB∗ (4)

is an isometry, V †V = 1A.

5. Strong subadditivity implies weak monotonicity. [important] Show that

for any state ρABC on HA ⊗HB ⊗HC , the condition

S(A) + S(B) ≤ S(AC) + S(BC)

is equivalent to strong subadditivity in the form

S(A′C ′) + S(A′B′) ≥ S(A′) + S(A′B′C ′) ∀A′B′C ′ .

Hint: use the Araki-Lieb purification trick.

[CN page 521] Choose a purification ρABCR and use the second version in the

form

S(BC) + S(BR) ≥ S(B) + S(RBC)

(i.e. set A′ = B,B′ = R,C ′ = C). Then purity of the whole state says S(RBC) =

S(A), S(BR) = S(AC) and we have

S(BC) + S(AC) ≥ S(B) + S(A)

which is equivalent to the requested form. This argument is reversible.

6. Consequences of SSA for mutual information. [optional] Prove that SSA

implies

I(A : B) + I(A : C) ≤ 2S(A) .

I(A : B) + I(A : C) = SA + SB − SAB + SA + SC − SAC ≤ 2SA

since SSA says the total of the red terms is ≤ 0.

Is the analogous inequality for Shannon entropies true?
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Shannon entropy is a special case of vN entropy for diagonal density matrices.

Alternatively, a more direct proof is the following:

−H(A : B)+H(A) = −H(A)−H(B)+H(AB)+H(A) = H(AB)−H(B) = H(A|B)

is a conditional entropy, which classically is positive.

Find an example of a state where I(A : B) > S(A).

A Bell pair does the trick, since I(A : B) = 2 > 1 = SA.

7. Measurement is coarse-graining. [optional]

Let ρ,σ be two states on H, and let {Mx} be a POVM. Define the classical

probability distributions px, qx from the outcomes of a measurement of {Mx} on

the states ρ,σ respectively (that is, px = trρMx etc). Show that

D̂(ρ||σ) ≥ D(p||q).

Define a quantum channel M : End(H)→ End (span{|x〉}ON) by

ρ 7→ M(ρ) =
∑
x

|x〉 〈x| trHMxρ.

This is trace-preserving by
∑

xMx = 1 and completely positive by Mx ≥ 0.

Then D(p||q) = D̂(M(ρ)||M(σ)) and the statement follows from monotonicity

of the relative entropy under the action of any quantum channel.

8. Scramble. [optional]

For this problem HA has dimension d.

(a) Warmup. The set of linear operators End(HA) is itself a Hilbert space

with the Hilbert-Schmidt inner product 〈A,B〉 = trA†B. Find an orthogo-

nal basis {Ua} for this space (over C) whose elements are themselves unitary

operators, trU†aUb = dδab.

[Hint: consider the algebra generated by the unitaries X,Z on the qdit

teleportation problem on the previous problem set.]

One nice set of such operators is

{Uij ≡ XiZj}ij=1..d

which are orthogonal since XiZj is unitary and traceless unless i = j = 0.

Bonus: For the case of |A| = 2k find such a basis whose elements square to

one.
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Alternatively, in the case when the dimension is 2k, we can just take tensor

products of pauli matrices:

1 ⊗ 1 ⊗ 1 ⊗ 1 · · ·︸ ︷︷ ︸
1

, 1 ⊗ σa ⊗ 1 ⊗ 1 · · ·︸ ︷︷ ︸
3k

, 1 ⊗ σa ⊗ 1 ⊗ σb · · ·︸ ︷︷ ︸
3
k(k−1)

2

, ...

and these are orthogonal because the paulis are traceless, and normalized

because the paulis are hermitian and square to one. And there is just the

right number of them because

k∑
l=0

3l
(
k

l

)
= (1 + 3)k = 4k = 22k = |A|2.

(b) Consider a maximally entangled state |Φ〉 ≡ 1√
d

∑
i |ii〉 ∈ HA ⊗ HA. Show

that the d2 maximally entangled states

|Φa〉 ≡ Ua ⊗ 1 |Φ〉

form an orthonormal basis of HA ⊗HA.

(c) Check your answers to the previous two parts for the case of qbits d =

2. Make a basis of product states from linear combinations of maximally

entangled states.

(d) Find {pa,Ua} with pa probabilities and Ua unitary such that the associated

channel scrambles an arbitrary operator A ∈ End(A), in the sense that∑
a

paUaAU†a =
trA

d
1.

pa = 1/d2.

(e) Use the previous result and the concavity of the entropy to show that the

uniform state u = 1/d has the maximum von Neumann entropy on A.

For any state ρ,

S

(
1

d

)
= S

(∑
a

paUaρU
†
a

)
concavity

≥
∑
a

paS
(
UaρU

†
a

) basis independence
= S (ρ) .

9. Random quantum expanders. [Very optional, somewhat open-ended and

numerical]
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Consider the family of quantum channels of the form

ρ 7→ Eχ(ρ) =

χ∑
i=1

piUiρU
†
i

with {Ui} a collection of unitaries. Such a channel is called a quantum expander.

Show that such a channel is unital.

Sample χ random unitaries from the Haar measure on U(d) e.g. in Mathematica1.

(You can take pi = 1/χ for definiteness if you wish.)

Sample a random initial density matrix2.

Consider the rate at which repeated action of the channel Eχ, ρn = En(ρ) mixes

the initial state ρ as a function of χ (and d). We can use the von Neumann

entropy as a measure of this mixing. Make some plots and some estimates.

Choosing χ = 2 and χ = 3 random unitaries and applying the resulting channel

t times to a random initial density matrix, I find plots that looks like this:

In fact it should be possible to say something analytically about, say, the behavior

of the purity. After one application of the channel, ρ0 →
∑χ

a=1
1
χ
Uaρ0U

†
a = ρ,

the purity becomes

trρ2 =
1

χ2

χ∑
ab

trU†bUaρ0U
†
aUbρ

1Haar measure means the measure which is invariant under the group action. I did this by choosing

a d×d complex matrix X with entries chosen from the gaussian distribution (which is indeed invariant

under U(d)) and then taking Y = X +X† to make it hermitian, and then using the matrix U which

diagonalizes Y .
2I did this by choosing a complex matrix X with entries chosen from the gaussian distribution,

and then taking Y = X +X† to make it hermitian and then taking Z = Y 2 to make it positive and

then taking ρ = Z/trZ to make it a density matrix. What distribution did I use?
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and we need to evaluate Haar averages∫
dΩ(U)UijU

†
kl = δilδjk∫

dΩ(U)UijU
†
klUmnU

†
pr = (δilδmr + δirδml) (δjkδnp + δjpδkn) ...

Taking the average, I’m finding

trρ2 =
1

χ2

(
χ (χ− 1)

2
+ χ (...)

)
something which rapidly decreases for large χ.

If n is very large, how many terms do I actually need to include in the sum in

En(ρ) =
∑
i1..in

pin · · · pi1Ui1 · · ·UinρU
†
in
· · ·U†i1 ?

By Shannon’s noiseless channel theorem, the typical subspace has 2nS(p) elements.

Consider the eigenstates (eigenoperators) of the (super)operator Eχ. Can you

show that any state orthogonal (in the Hilbert-Schmidt norm) to 1 has an eigen-

value less than 1?

In lecture we showed several results beginning with monotonicity of the relative

entropy as the starting point. Here we will show, following Ruskai, that SSA is just as

good a starting point.

10. SSA implies concavity of the conditional entropy.

(a) Show that SSA can be rewritten as

D(ρ12||ρ2) ≤ D(ρ123||ρ23) (5)

where ρ2 means 11 ⊗ ρ2 etc. (Note that in this expression the arguments

are not density matrices and positivity of the BHS is not guaranteed.)

(b) Consider a bipartite state ρ12. Show that

D(ρ12||1/d1 ⊗ ρ2) = −S(12) + S(2) + log d1 = −S(1|2) + log d1 .

Just use the definition and log (1/d1 ⊗ ρ2) = − log d1 + logρ2. This is a

useful relation between the conditional entropy and a relative entropy (minus

something, since it’s not positive). Notice that the mutual information

would have been D(ρ12||ρ1 ⊗ ρ2) = I(1 : 2).
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(c) Apply SSA in the form (5) to the state

ρ123 =
∑
i

piρ
i
12 ⊗ |i〉 〈i|3 .

Conclude the statement in the title of this problem.

For this density matrix,

S23 =
∑
i

piS(ρi2) +H(p), S123 =
∑
i

piS(ρi12) +H(p).

So SSA says

S123 − S23 ≤ S12 − S2 = Sρ(1|2)

The LHS is ∑
i

pi

S(ρi12)− S(ρi2)︸ ︷︷ ︸
Sρi (1|2)

 =
∑
i

piSρi(1|2)

which says that the conditional entropy is concave.

11. SSA implies monotonicity of the relative entropy.

(a) Show that for F (A) convex and homogeneous F (xA) = xF (A),

lim
x→0

F (A+ xB)− F (A)

x
≤ F (B). (6)

Convexity says

F (pA+ (1− p)B) ≤ pF (A) + (1− p)F (B) (7)

for p ∈ [0, 1]. Homogeneity says that this implies

pF

(
A+

(1− p)
p

B

)
≤ pF (A) + (1− p)F (B). (8)

F

(
A+

(1− p)
p

B

)
≤ F (A) +

(1− p)
p

F (B). (9)

Then letting x = 1−p
p

we have

F (A+ xB)− F (A) ≤ xF (B) (10)

for any x > 0 and we are done.
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(b) Recall from problem (10) that SSA implies concavity of S(2|1) ≡ S(ρ12)−
S(ρ1).

We are going to let F (ρ) = −S(2|1)ρ. By SSA, this function is convex, and

it is homogeneous because S(xρ) = −trxρ log xρ = xS(ρ) − x log x so for

any state on 12,

F (xρ) = S(xρ1)− S(xρ12) = x(S(ρ1)− S(ρ12)) = xF (ρ). (11)

(c) Combine the first two parts of this problem, setting

A ≡ σ12, B ≡ ρ12

in (6) to show monotonicity of the relative entropy under partial trace.

Applying (6) with the given operators we have

trρ12 log ρ12 − trρ1 log ρ1 ≥ lim
x→0

1

x
(−S(σ12 + xρ12) + S(σ1 + xρ1) + S(σ12)− S(σ1))

(12)

= trρ12 log σ12 + trρ12 − trρ1 log σ1 − trρ1 (13)

= trρ12 log σ12 + 1− trρ1 log σ1 − 1 (14)

= trρ12 log σ12 − trρ1 log σ1 (15)

which can be rearranged to say

D(ρ12||σ12) ≥ D(ρ1||σ1).

At step (13), I used ∂x|x=0S(σ+ρx) = −trρ log σ−trρ. In general the Taylor

expansion of log(σ + xρ) in x is a frightening thing (since ρ and σ need not

commute), but cyclicity of the trace means that this does not cause trouble

here.

12. SSA implies joint convexity of relative entropy.

(a) Monotonicity of the relative entropy implies joint convexity. Apply

monotonicity of the relative entropy to the following block-diagonal bipartite

states

ρAB =
∑
i

piρ
i
A ⊗ |i〉 〈i|B , σAB =

∑
i

piσ
i
A ⊗ |i〉 〈i|B . (16)

Conclude the boldface statement.
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D(ρA||σA) ≤ D(ρAB||σAB). (17)

For the given density matrices, the LHS is

D(ρA||σA) = D(
∑
i

piρ
i
A||
∑
j

pjσ
j
A).

The RHS is

D(ρAB||σAB) = trρAB log ρAB − trρAB log σAB. (18)

Again we use the fact form of the eigenvectors of states of the form (16)

(which are sometimes called qc states): if the eigenvectors and eigenvalues

of σiA are |k(i)〉〈k(i)| and λ
(i)
k respectively then those of σAB are

|k(i)〉〈k(i)| ⊗ |i〉〈i| and piλ
(i)
k

respectively. Therefore

log σAB =
∑
i,k

|k(i)〉〈k(i)| ⊗ |i〉〈i| log
(
piλ

(i)
k

)
and the RHS of (17) is

−H(p) +
∑
i

pitrρ
i
A log ρiA +H(p)−

∑
i

pitrρ
i
A log σiA =

∑
i

piD(ρiA||σiA).

(b) Conclude from the previous part (12a) and (11) that SSA implies joint

convexity of the relative entropy.

(c) Check that there are no loops in the above chains of reasoning.
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