University of California at San Diego - Department of Physics - Prof. John McGreevy

Physics 213 Winter 2023
 Assignment 8

Due 11:00am, Tuesday March 7, 2023

I've made most of the problems optional so that you have time to think about the final paper.

1. Brain-warmer. [optional] Let $Z=\sum_{j}|j\rangle\langle j| \omega^{j}$ be the clock operator on a d-dimensional Hilbert space, $\omega \equiv e^{2 \pi \mathbf{i} / d}$. Show that $K_{j}=Z^{j} / \sqrt{d}$ are Kraus operators for the diagonal-part channel. That is: a density matrix can be scrambled (as defined in lecture) by only d operators.
2. Equivalent Kraus representations. [optional] Show that $\{\mathcal{K}\} \simeq\{\tilde{\mathcal{K}}\}$ produce the same channel iff $\mathcal{K}_{k}=\sum_{l} u_{k l} \tilde{\mathcal{K}}_{l}$ where $u_{k l}$ is a unitary matrix in the $k l$ indices. Open-ended bonus problem: find invariants of $\{\mathcal{K}\}$ which label equivalence classes under the above equivalence relation.
3. The entropy exchange. [optional] Many of the quantum channels we considered in previous homeworks have the property that they increase the von Neumann entropy of their victim. An exception is the amplitude damping channel, which makes the state more pure. An implementation of a second law of thermodynamics would require us to identify a total entropy that probably increases.

We showed that any channel can be regarded as unitary evolution on a larger space (followed by partial trace), and unitary evolution doesn't change the entropy (of the whole system) at all. Even without introducing the environment explicitly, the Kraus operators give us a way to keep track of the entropy:
Suppose a CPTP map $\mathcal{E}: \operatorname{End}(A) \rightarrow \operatorname{End}(B)$ has Kraus representation $\left\{K_{i}\right\}_{i=1 . . r}$. For any density matrix on A, let

$$
\varsigma_{i j} \equiv \operatorname{tr} K_{i} \boldsymbol{\rho} K_{j}^{\dagger} .
$$

(Recall that the index on the Kraus operators comes from a basis on the environment.)
(a) Show that $\varsigma_{i j}$ is positive and has unit trace as a matrix in the $i j$ space. (So it can be regarded as a density matrix on that space.)
(b) The von Neumann entropy of $\varsigma_{i j}, S(\varsigma)=-\operatorname{tr} \varsigma \log \varsigma$ is called the entropy exchange. Show that $S(\varsigma)$ is preserved by the equivalence relation between Kraus representations of \mathcal{E}.
(c) Show (by Stinespring dilation) that ς is the reduced density matrix of the environment after the action of the channel, and therefore that the entropy exchange is equal to the entropy of the environment after the action of the channel.
4. Isometries from density matrices. [optional] Given a positive density matrix (no zero eigenvalues) on a bipartite system $\rho_{A B}$, show that the following object $V_{A \rightarrow B B^{\star} A}^{\rho}$ (time goes up in the picture):

is an isometry, $V^{\dagger} V=\mathbb{1}_{A}$.
5. Strong subadditivity implies weak monotonicity. [important] Show that for any state $\rho_{A B C}$ on $\mathcal{H}_{A} \otimes \mathcal{H}_{B} \otimes \mathcal{H}_{C}$, the condition

$$
S(A)+S(B) \leq S(A C)+S(B C)
$$

is equivalent to strong subadditivity in the form

$$
S\left(A^{\prime} C^{\prime}\right)+S\left(A^{\prime} B^{\prime}\right) \geq S\left(A^{\prime}\right)+S\left(A^{\prime} B^{\prime} C^{\prime}\right) \quad \forall A^{\prime} B^{\prime} C^{\prime}
$$

Hint: use the Araki-Lieb purification trick.
6. Consequences of SSA for mutual information. [optional] Prove that SSA implies

$$
I(A: B)+I(A: C) \leq 2 S(A)
$$

Is the analogous inequality for Shannon entropies true?
Find an example of a state where $I(A: B)>S(A)$.

7. Measurement is coarse-graining. [optional]

Let $\boldsymbol{\rho}, \boldsymbol{\sigma}$ be two states on \mathcal{H}, and let $\left\{\mathcal{M}_{x}\right\}$ be a POVM. Define the classical probability distributions p_{x}, q_{x} from the outcomes of a measurement of $\left\{\mathcal{M}_{x}\right\}$ on the states $\boldsymbol{\rho}, \boldsymbol{\sigma}$ respectively (that is, $p_{x}=\operatorname{tr} \boldsymbol{\rho} \mathcal{M}_{x}$ etc). Show that

$$
\hat{D}(\boldsymbol{\rho} \| \boldsymbol{\sigma}) \geq D(p \| q)
$$

8. Scramble. [optional]

For this problem \mathcal{H}_{A} has dimension d.
(a) Warmup. The set of linear operators $\operatorname{End}\left(\mathcal{H}_{A}\right)$ is itself a Hilbert space with the Hilbert-Schmidt inner product $\langle\mathbf{A}, \mathbf{B}\rangle=\operatorname{tr} \mathbf{A}^{\dagger} \mathbf{B}$. Find an orthogonal basis $\left\{\mathbf{U}_{a}\right\}$ for this space (over \mathbb{C}) whose elements are themselves unitary operators, $\operatorname{tr} \mathbf{U}_{a}^{\dagger} \mathbf{U}_{b}=d \delta_{a b}$.
[Hint: consider the algebra generated by the unitaries \mathbf{X}, \mathbf{Z} on the qdit teleportation problem on the previous problem set.]
Bonus: For the case of $|A|=2^{k}$ find such a basis whose elements square to one.
(b) Consider a maximally entangled state $|\Phi\rangle \equiv \frac{1}{\sqrt{d}} \sum_{i}|i i\rangle \in \mathcal{H}_{A} \otimes \mathcal{H}_{A}$. Show that the d^{2} maximally entangled states

$$
\left|\Phi_{a}\right\rangle \equiv \mathbf{U}_{a} \otimes \mathbb{1}|\Phi\rangle
$$

form an orthonormal basis of $\mathcal{H}_{A} \otimes \mathcal{H}_{A}$.
(c) Check your answers to the previous two parts for the case of qbits $d=$ 2. Make a basis of product states from linear combinations of maximally entangled states.
(d) Find $\left\{p_{a}, \mathbf{U}_{a}\right\}$ with p_{a} probabilities and \mathbf{U}_{a} unitary such that the associated channel scrambles an arbitrary operator $\mathbf{A} \in \operatorname{End}(A)$, in the sense that

$$
\sum_{a} p_{a} \mathbf{U}_{a} \mathbf{A} \mathbf{U}_{a}^{\dagger}=\frac{\operatorname{tr} \mathbf{A}}{d} 11
$$

(e) Use the previous result and the concavity of the entropy to show that the uniform state $\mathbf{u}=1 / d$ has the maximum von Neumann entropy on A.
9. Random quantum expanders. [Very optional, somewhat open-ended and numerical]

Consider the family of quantum channels of the form

$$
\boldsymbol{\rho} \mapsto \mathcal{E}_{\chi}(\boldsymbol{\rho})=\sum_{i=1}^{\chi} p_{i} \mathbf{U}_{i} \boldsymbol{\rho} \mathbf{U}_{i}^{\dagger}
$$

with $\left\{\mathbf{U}_{i}\right\}$ a collection of unitaries. Such a channel is called a quantum expander. Show that such a channel is unital.

Sample χ random unitaries from the Haar measure on $\mathrm{U}(d)$ e.g. in Mathematica ${ }^{1}$. (You can take $p_{i}=1 / \chi$ for definiteness if you wish.)
Sample a random initial density matrix ${ }^{2}$.
Consider the rate at which repeated action of the channel $\mathcal{E}_{\chi}, \boldsymbol{\rho}_{n}=\mathcal{E}^{n}(\boldsymbol{\rho})$ mixes the initial state $\boldsymbol{\rho}$ as a function of χ (and d). We can use the von Neumann entropy as a measure of this mixing. Make some plots and some estimates.
If n is very large, how many terms do I actually need to include in the sum in

$$
\mathcal{E}^{n}(\boldsymbol{\rho})=\sum_{i_{1} . . i_{n}} p_{i_{n}} \cdots p_{i_{1}} \mathbf{U}_{i_{1}} \cdots \mathbf{U}_{i_{n}} \boldsymbol{\rho} \mathbf{U}_{i_{n}}^{\dagger} \cdots \mathbf{U}_{i_{1}}^{\dagger} ?
$$

Consider the eigenstates (eigenoperators) of the (super)operator \mathcal{E}_{χ}. Can you show that any state orthogonal (in the Hilbert-Schmidt norm) to $\mathbb{1}$ has an eigenvalue less than 1 ?

In lecture we showed several results beginning with monotonicity of the relative entropy as the starting point. Here we will show, following Ruskai, that SSA is just as good a starting point.

10. SSA implies concavity of the conditional entropy.

(a) Show that SSA can be rewritten as

$$
\begin{equation*}
D\left(\boldsymbol{\rho}_{12} \| \boldsymbol{\rho}_{2}\right) \leq D\left(\boldsymbol{\rho}_{123} \| \boldsymbol{\rho}_{23}\right) \tag{2}
\end{equation*}
$$

where $\boldsymbol{\rho}_{2}$ means $\mathbb{1}_{1} \otimes \boldsymbol{\rho}_{2}$ etc. (Note that in this expression the arguments are not density matrices and positivity of the BHS is not guaranteed.)
(b) Consider a bipartite state $\boldsymbol{\rho}_{12}$. Show that

$$
D\left(\boldsymbol{\rho}_{12} \| \mathbb{1} / d_{1} \otimes \boldsymbol{\rho}_{2}\right)=-S(12)+S(2)+\log d_{1}=-S(1 \mid 2)+\log d_{1}
$$

(c) Apply SSA in the form (2) to the state

$$
\boldsymbol{\rho}_{123}=\sum_{i} p_{i} \boldsymbol{\rho}_{12}^{i} \otimes|i\rangle\left\langle\left. i\right|_{3} .\right.
$$

Conclude the statement in the title of this problem.

[^0]11. SSA implies monotonicity of the relative entropy.
(a) Show that for $F(A)$ convex and homogeneous $F(x A)=x F(A)$,
\[

$$
\begin{equation*}
\lim _{x \rightarrow 0} \frac{F(A+x B)-F(A)}{x} \leq F(B) . \tag{3}
\end{equation*}
$$

\]

(b) Recall from problem (10) that SSA implies concavity of $S(2 \mid 1) \equiv S\left(\boldsymbol{\rho}_{12}\right)-$ $S\left(\boldsymbol{\rho}_{1}\right)$.
(c) Combine the first two parts of this problem, setting

$$
A \equiv \boldsymbol{\sigma}_{12}, B \equiv \boldsymbol{\rho}_{12}
$$

in (3) to show monotonicity of the relative entropy under partial trace.

12. SSA implies joint convexity of relative entropy.

(a) Monotonicity of the relative entropy implies joint convexity. Apply monotonicity of the relative entropy to the following block-diagonal bipartite states

$$
\begin{equation*}
\boldsymbol{\rho}_{A B}=\sum_{i} p_{i} \boldsymbol{\rho}_{A}^{i} \otimes|i\rangle\left\langle\left. i\right|_{B}, \quad \boldsymbol{\sigma}_{A B}=\sum_{i} p_{i} \boldsymbol{\sigma}_{A}^{i} \otimes \mid i\right\rangle\left\langle\left. i\right|_{B} .\right. \tag{4}
\end{equation*}
$$

Conclude the boldface statement.
(b) Conclude from the previous part (12a) and (11) that SSA implies joint convexity of the relative entropy.
(c) Check that there are no loops in the above chains of reasoning.

[^0]: ${ }^{1}$ Haar measure means the measure which is invariant under the group action. I did this by choosing a $d \times d$ complex matrix X with entries chosen from the gaussian distribution (which is indeed invariant under $\mathrm{U}(d)$) and then taking $Y=X+X^{\dagger}$ to make it hermitian, and then using the matrix U which diagonalizes Y.
 ${ }^{2}$ I did this by choosing a complex matrix X with entries chosen from the gaussian distribution, and then taking $Y=X+X^{\dagger}$ to make it hermitian and then taking $Z=Y^{2}$ to make it positive and then taking $\rho=Z / \operatorname{tr} Z$ to make it a density matrix. What distribution did I use?

