
University of California at San Diego – Department of Physics – Prof. John McGreevy

Physics 213 Winter 2023
Assignment 8

Due 11:00am, Tuesday March 7, 2023

I’ve made most of the problems optional so that you have time to think about the

final paper.

1. Brain-warmer. [optional] Let Z =
∑

j |j〉 〈j|ωj be the clock operator on a

d-dimensional Hilbert space, ω ≡ e2πi/d. Show that Kj = Zj/
√
d are Kraus oper-

ators for the diagonal-part channel. That is: a density matrix can be scrambled

(as defined in lecture) by only d operators.

2. Equivalent Kraus representations. [optional] Show that {K} ' {K̃} produce

the same channel iff Kk =
∑

l uklK̃l where ukl is a unitary matrix in the kl indices.

Open-ended bonus problem: find invariants of {K} which label equivalence classes

under the above equivalence relation.

3. The entropy exchange. [optional] Many of the quantum channels we con-

sidered in previous homeworks have the property that they increase the von

Neumann entropy of their victim. An exception is the amplitude damping chan-

nel, which makes the state more pure. An implementation of a second law of

thermodynamics would require us to identify a total entropy that probably in-

creases.

We showed that any channel can be regarded as unitary evolution on a larger

space (followed by partial trace), and unitary evolution doesn’t change the en-

tropy (of the whole system) at all. Even without introducing the environment

explicitly, the Kraus operators give us a way to keep track of the entropy:

Suppose a CPTP map E : End(A)→ End(B) has Kraus representation {Ki}i=1..r.

For any density matrix on A, let

ςij ≡ trKiρK
†
j .

(Recall that the index on the Kraus operators comes from a basis on the envi-

ronment.)

(a) Show that ςij is positive and has unit trace as a matrix in the ij space. (So

it can be regarded as a density matrix on that space.)
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(b) The von Neumann entropy of ςij, S(ς) = −trς log ς is called the entropy

exchange. Show that S(ς) is preserved by the equivalence relation between

Kraus representations of E .

(c) Show (by Stinespring dilation) that ς is the reduced density matrix of the

environment after the action of the channel, and therefore that the entropy

exchange is equal to the entropy of the environment after the action of the

channel.

4. Isometries from density matrices. [optional] Given a positive density matrix

(no zero eigenvalues) on a bipartite system ρAB, show that the following object

V ρ
A→BB?A (time goes up in the picture):

V ρ
A→BB?A =

ρ
− 1

2
A

ρ
1
2
AB

A

AB

BB∗ (1)

is an isometry, V †V = 1A.

5. Strong subadditivity implies weak monotonicity. [important] Show that

for any state ρABC on HA ⊗HB ⊗HC , the condition

S(A) + S(B) ≤ S(AC) + S(BC)

is equivalent to strong subadditivity in the form

S(A′C ′) + S(A′B′) ≥ S(A′) + S(A′B′C ′) ∀A′B′C ′ .

Hint: use the Araki-Lieb purification trick.

6. Consequences of SSA for mutual information. [optional] Prove that SSA

implies

I(A : B) + I(A : C) ≤ 2S(A) .

Is the analogous inequality for Shannon entropies true?

Find an example of a state where I(A : B) > S(A).

7. Measurement is coarse-graining. [optional]

Let ρ,σ be two states on H, and let {Mx} be a POVM. Define the classical

probability distributions px, qx from the outcomes of a measurement of {Mx} on

the states ρ,σ respectively (that is, px = trρMx etc). Show that

D̂(ρ||σ) ≥ D(p||q).
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8. Scramble. [optional]

For this problem HA has dimension d.

(a) Warmup. The set of linear operators End(HA) is itself a Hilbert space

with the Hilbert-Schmidt inner product 〈A,B〉 = trA†B. Find an orthogo-

nal basis {Ua} for this space (over C) whose elements are themselves unitary

operators, trU†aUb = dδab.

[Hint: consider the algebra generated by the unitaries X,Z on the qdit

teleportation problem on the previous problem set.]

Bonus: For the case of |A| = 2k find such a basis whose elements square to

one.

(b) Consider a maximally entangled state |Φ〉 ≡ 1√
d

∑
i |ii〉 ∈ HA ⊗ HA. Show

that the d2 maximally entangled states

|Φa〉 ≡ Ua ⊗ 1 |Φ〉

form an orthonormal basis of HA ⊗HA.

(c) Check your answers to the previous two parts for the case of qbits d =

2. Make a basis of product states from linear combinations of maximally

entangled states.

(d) Find {pa,Ua} with pa probabilities and Ua unitary such that the associated

channel scrambles an arbitrary operator A ∈ End(A), in the sense that∑
a

paUaAU†a =
trA

d
1.

(e) Use the previous result and the concavity of the entropy to show that the

uniform state u = 1/d has the maximum von Neumann entropy on A.

9. Random quantum expanders. [Very optional, somewhat open-ended and

numerical]

Consider the family of quantum channels of the form

ρ 7→ Eχ(ρ) =

χ∑
i=1

piUiρU
†
i

with {Ui} a collection of unitaries. Such a channel is called a quantum expander.

Show that such a channel is unital.
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Sample χ random unitaries from the Haar measure on U(d) e.g. in Mathematica1.

(You can take pi = 1/χ for definiteness if you wish.)

Sample a random initial density matrix2.

Consider the rate at which repeated action of the channel Eχ, ρn = En(ρ) mixes

the initial state ρ as a function of χ (and d). We can use the von Neumann

entropy as a measure of this mixing. Make some plots and some estimates.

If n is very large, how many terms do I actually need to include in the sum in

En(ρ) =
∑
i1..in

pin · · · pi1Ui1 · · ·UinρU
†
in
· · ·U†i1 ?

Consider the eigenstates (eigenoperators) of the (super)operator Eχ. Can you

show that any state orthogonal (in the Hilbert-Schmidt norm) to 1 has an eigen-

value less than 1?

In lecture we showed several results beginning with monotonicity of the relative

entropy as the starting point. Here we will show, following Ruskai, that SSA is just as

good a starting point.

10. SSA implies concavity of the conditional entropy.

(a) Show that SSA can be rewritten as

D(ρ12||ρ2) ≤ D(ρ123||ρ23) (2)

where ρ2 means 11 ⊗ ρ2 etc. (Note that in this expression the arguments

are not density matrices and positivity of the BHS is not guaranteed.)

(b) Consider a bipartite state ρ12. Show that

D(ρ12||1/d1 ⊗ ρ2) = −S(12) + S(2) + log d1 = −S(1|2) + log d1 .

(c) Apply SSA in the form (2) to the state

ρ123 =
∑
i

piρ
i
12 ⊗ |i〉 〈i|3 .

Conclude the statement in the title of this problem.
1 Haar measure means the measure which is invariant under the group action. I did this by choosing

a d×d complex matrix X with entries chosen from the gaussian distribution (which is indeed invariant

under U(d)) and then taking Y = X +X† to make it hermitian, and then using the matrix U which

diagonalizes Y .
2 I did this by choosing a complex matrix X with entries chosen from the gaussian distribution,

and then taking Y = X +X† to make it hermitian and then taking Z = Y 2 to make it positive and

then taking ρ = Z/trZ to make it a density matrix. What distribution did I use?
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11. SSA implies monotonicity of the relative entropy.

(a) Show that for F (A) convex and homogeneous F (xA) = xF (A),

lim
x→0

F (A+ xB)− F (A)

x
≤ F (B). (3)

(b) Recall from problem (10) that SSA implies concavity of S(2|1) ≡ S(ρ12)−
S(ρ1).

(c) Combine the first two parts of this problem, setting

A ≡ σ12, B ≡ ρ12

in (3) to show monotonicity of the relative entropy under partial trace.

12. SSA implies joint convexity of relative entropy.

(a) Monotonicity of the relative entropy implies joint convexity. Apply

monotonicity of the relative entropy to the following block-diagonal bipartite

states

ρAB =
∑
i

piρ
i
A ⊗ |i〉 〈i|B , σAB =

∑
i

piσ
i
A ⊗ |i〉 〈i|B . (4)

Conclude the boldface statement.

(b) Conclude from the previous part (12a) and (11) that SSA implies joint

convexity of the relative entropy.

(c) Check that there are no loops in the above chains of reasoning.

5


