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1. Brainwarmers.

(a) [optional] Is it true that 0 ≤ S(A|C) + S(B|C)? Prove or give a counterex-

ample.

A counterexample is:

|ψ〉ABC = |0〉A ⊗
1√
2

(|00〉+ |11〉)BC

which has S(A) = S(BC) = 0, S(B) = S(C) = S(AB) = S(AC) = 1 and

hence S(A|C) ≡ S(AC)−S(C) = 0, S(B|C) ≡ S(BC)−S(C) = 0−1 = −1

so

S(A|C) + S(B|C) = −1.

In contrast, SSA says e.g.

0 ≤ S(C|A)+S(C|B) = S(AC)−S(A)+S(AB)−S(B) = 1−0+1−1 = 1.

Notice that SSA in this form is a manifestation of monogamy of entangle-

ment: S(C|A) and S(C|B) can each be negative, precisely when AC or CB

are entangled, respectively. But SSA (in the form 0 ≤ S(C|A) + S(C|B))

says that making AC more entangled constrains how entangled BC can be.

(b) Show that the von Neumann entropy is the special case S(ρ) = lim
α→1

Sα(ρ)

of the Renyi entropies:

Sα(ρ) ≡ sgn(α)

1− α
log trρα =

sgn(α)

1− α
log
∑
a

pαa .
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lim
α→1

sgn(α)

1− α
log
∑
a

pαa = lim
α→1

1

1− α
log
∑
a

pae
(α−1) ln pa (1)

= lim
α→1

1

1− α
log

(∑
a

pa
(
1 + (α− 1) ln pa +O(α− 1)2

))
(2)

= lim
α→1

1

1− α
log

(∑
a

pa
(
1 + (α− 1) ln pa +O(α− 1)2

))
(3)

= lim
α→1

1

1− α
log

((
1 + (α− 1)

∑
a

pa ln pa +O(α− 1)2

))
(4)

log(1 + x) =
x

ln 2
+O(x2) = lim

α→1

1

1− α

(
α− 1

ln 2

∑
a

pa ln pa +O(α− 1)2

)
(5)

= − 1

ln 2

∑
a

pa ln pa =
ln 2

ln 2
(−
∑
a

pa log pa) = S(ρ).

(6)

Alternatively, following Jin-Long Huang, we can subtract 0 = log
∑

a pa
from log

∑
a p

α
a and immediately recognize the expression for the derivative

lim
α→1

Sα(ρ) = − lim
α→1

log
∑

a p
α
a − log

∑
a p

1
a

α− 1
(7)

= −∂α log
∑
a

pαa |α=1 (8)

= −
∑

a p
α
a log pa∑
a p

α
a

|α=1 = −
∑
a

pa log pa = S(ρ). (9)

2. Work and the Holevo bound. [optional]

(a) Show that the Holevo quantity χ(pa, ρa) ≡ S(ρav)−
∑

a paS(ρa) (with ρav ≡∑
a paρa) can be written as χ(pa, ρa) =

∑
a paD(ρa||ρav).

(b) Show that ∑
a

paD(ρa||σ) = χ(pa, ρa) +D(ρav||σ).
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(c) Suppose A labors in contact with a heat bath at temperature T , and is

governed by hamiltonian H. Convince yourself that in order to create the

signal state ρa, the required work A must do is

Wa ≥ FT [ρa]− FT [ρT ] = (kBT ln 2)D(ρa||ρT ),

where FT [ρ] ≡ trρH − TSvN [ρ] is the free energy functional.

(d) Show that the average work W̄ ≡
∑

a paWa satisfies

W̄ ≥ (kBT ln 2)χ(pa, ρa).

(hint: D(ρ||σ) ≥ 0).

(e) Apply the Holevo bound to conclude

W̄ ≥ (kBT ln 2) I(A : B),

so that that every bit of information A can convey to B requires average

work at least kBT ln 2. Yay, Landauer.

(f) [optional] Estimate the amount of work done per bit sent to your cellular

telephone.

3. Holevo quantity and channel capacity. [optional] Consider a collection of

mutually-commuting density matrices {ρa}. Show that in this case, the Holevo

quantity

χ(pa, ρa) ≡ S(ρav)−
∑
a

paS(ρa) =
∑
a

paD(ρa||ρav), ρav ≡
∑
a

paρa

is the mutual information I(A : B), where the random variable B is the variable

b labelling the mutual eigenvectors of the ρa: ρa =
∑

b λ
b
a|b〉〈b|.

So suppose that ρa =
∑

b p
(a)
b |b〉〈b| are all simultaneously diagonal. First, notice

that

p(b|a) = 〈b|ρa|b〉

is the conditional probability for outcome b given signal a. Then

S(ρav) = −
∑
ab

pap
(b)
a log

(∑
a′

pa′p
(b)
a′

)
(10)

= −
∑
ab

p(b|a)pa log

(∑
a′

p(b|a)pa′

)
(11)

= −
∑
b

p(b) log p(b) = S(B). (12)
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Next, notice that under the assumption that the ρa are all diagonal in the |b〉
basis,

S(ρa) = −
∑
b

〈b| ρa log ρa |b〉 = −
∑
b

〈b|
∑
b′

|b′〉〈b′|p(a)b′ log p
(a)
b′ |b〉 = −

∑
b

p
(a)
b log p

(a)
b = H(B|A = a).

And therefore∑
a

paS(ρa) =
∑
a

paH(B|A = a) = H(B|A) = S(AB)− S(A)

is the conditional entropy.

Putting these together, the Holevo quantity is

χ(pa, ρa) = S(ρav)−
∑
a

paS(ρa) = SB−(SAB−SA) = SA+SB−SAB = I(A : B),

the mutual information.

This suggests that a good definition of the capacity of a quantum channel for

sending classical information (let’s call it classical capacity) is determined by the

Holevo quantity as

C = χ(pa, ρa)/T

(where T is how long the information takes to go down the channel). And indeed,

recall the Holevo bound, which says that I(A : B) ≤ χ(pa, ρa) where B is the

outcomes of any measurement done on
∑

a paρa.

4. Channel capacity of the radiation field. [optional but highly encouraged]

Suppose (crazy idea) we wanted to send signals using the electromagnetic field.

The radiation field is a collection of quantum harmonic oscillators labelled by

frequency, ω. For simplicity, let’s consider a one-dimensional field with only one

polarization, so there is one oscillator for each value of ω. In the first part of

the problem, we’ll put the system in a box, so that the allowed frequencies are

integer multiples of some fundamental frequency, and the energy of a state with

nj photons in mode j is E({n}) =
∑

j jnjh ≡ Nh for some constant h.

The signal information could be stored for example in the number of photons

n̄(ω) with a given frequency. As in other examples, to send message a, A puts

the field in the state ρa. And the message can be extracted by measurements on

the resulting radiation field, for example by counting photons.

For practical reasons, we will fix the power P of the signal. There are several

ways to implement this constraint; we’ll consider two below.

At first we ignore the presence of noise.
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(a) Show that the Holevo quantity χ (and hence the channel capacity, no matter

what measurement we do) is bounded by the entropy of the average signal∑
a paρa.

S(ρa) ≥ 0, so χ ≤ S(ρav).

(b) What is the ρav that maximizes the entropy, subject to the constraint of

fixed energy E({n}) = PT (where T is the duration of the signal)?

It is the uniform state on the set of energy eigenstates with E({n}) = PT ≡
EN ,

ρmax =
1EN
NN

,

where NN is the dimension of this space. NN is equal to the number of

partitions of N . This is like the microcanonical ensemble.

N is related to P by

PT ≡ EN = Nh.

(c) As a useful intermediate step, show that the entropy for a single harmonic

oscillator in thermal equilibrium can be written in terms of the average

occupation number n̄ as SB(n̄) where

SB(n) ≡ (n+ 1) log(n+ 1)− n log n.

The partition function for a single SHO mode with frequency ω is

Z = tre−βH =
∞∑
n=0

e−βω(n+
1
2
) =

eβω/2

eβω − 1
.

The average occupation number is the Bose function n̄ = 1
eβω−1 , which

satisfies

n̄+ 1 =
eβω

eβω − 1
,
n̄+ 1

n̄
= eβω.

Therefore

S = −∂TF = − ln
(
eβω − 1

)
+ βω

eβω

eβω − 1
(13)

= ln n̄+ ln
n̄+ 1

n̄
n̄+ 1 = −n̄ ln n̄+ (n̄+ 1) ln(n̄+ 1). (14)

Alternatively, we can write p(n) = e−βω(n+
1
2
)/Z in terms of n̄ and n̄+ 1 as

p(n) = e−βnω(1− e−βω) =
n̄n

(n̄+ 1)n+1

5



and use

S(p) = −
∞∑
n=0

p(n) log p(n) (15)

=
∑
n

(n+ 1)
n̄n

(n̄+ 1)n+1
log(n̄+ 1)−

∑
n

n
n̄n

(n̄+ 1)n+1
log n̄ (16)

= −n̄ ln n̄+ (n̄+ 1) ln(n̄+ 1). (17)

(d) Using the definition of classical capacity in the previous problem, determine

the classical capacity of the channel in part 4b at large T .

You may use the Hardy-Ramanujan formula, which counts partitions of N

at large N :

N (N) =
1

4
√

3N
eπ
√

2
3
N +O

(
e
π
2

√
2
3
N
)
.

We can use the H-R formula because N is large when PT is large.

The channel capacity is a rate:

C =
Smax
T

=
logN (N)

T
=

1

T
π

√
2

3
N =

1

T
π

√
2

3

PT
h

= π

√
2P

3hT
.

(e) Alternatively, we may impose the condition of fixed power as a condition

on the average energy. The state which maximizes entropy at fixed average

energy is a thermal state. The temperature is determined by the average

energy, which is in turn related to the power carried by the signal. Find

the relation between T and P . Find a bound on the channel capacity at

fixed average energy. (In this part of the problem you may take the infinite-

volume limit.)

The energy density in the radiation field at temperature T = 1/β (in one

infinite dimension) is

〈E〉 =

∫
dω 〈n(ω)〉ω =

∫
dωω

1

eβω − 1
=
πT 2

12~
.

If we wait a time T a chunk of radiation of length cT will pass us; its energy

is E = 〈E〉 cT . We must equate this with E = PT giving

P = c 〈E〉 =
cπT 2

12~
.
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Similarly, when counting the rate of communication, the signal is moving

at the speed of light, so in time T , a chunk of length cT passes B. So the

bound on the rate is given by cS where S is the entropy density.

C = cSmax = c

∫
dωSB(n̄(ω)).

Here SB(n) = (n + 1) log(n + 1)− n log n is the entropy of a bosonic mode

with average occupation number n. In thermal equilibrium at temperature

T , n̄(ω) = 1
eω/T−1 is the Bose distribution.

Inevitably there will be noise, represented by an additional number of photons

n̄(ω) at each frequency which are out of our control. Assume the noise is thermal,

in equilibrium at temperature TN . Suppose the power of the signal P (which is

some amount of extra photons on top of the noise) is still fixed.

(f) Convince yourself that the upper bound on the channel capacity is now

reduced by the entropy of the noise:

CT ≤ S(ρTS+N )− S(ρTN )

where ρT is the thermal density matrix with temperature T , TN is the noise

temperature, and TS+N is the temperature at an average energy which in-

cludes both the noise and the signal. Find TS+N in terms of TN and P .

If N is the power in the noise

(P +N) T =
π

12
T 2
S+N

So

TS+N =

√
12

π
Pc+ T 2

N .

(g) Do the integral over frequency. Study the high- and low-temperature limits

of your answer. Confirm Landauer’s principle in the former case in the

following sense: compute the minimum power required to send a single bit.∫ ∞
−∞

dωSB(〈n〉T ) = T

∫ ∞
−∞

dθSB

(
1

eθ − 1

)
= T

π2

3
,

as Mathematica can tell you.
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Then

C ≤ S(ρTS+N )− S(ρTN ) (18)

=
π2

3
(TS+N − TN) (19)

=
π2

3

(√
12

π
Pc+ T 2

N − TN

)
(20)

This function looks like this (in units where T = 1):

When P � T 2
N , we can ignore the noise and we reproduce the answer from

the first part of the problem. In the high-temperature limit we find

C ≤ Pc

kBTN log 2

which says that the condition to send a single bit is precisely: the power

must exceed the Landauer bound, kBTN log 2.

This problem is loosely based on the discussion in Vedral, quant-ph/0102094,

which I found incredibly confusing. For example: there is a 3 missing in

eqn 45, the expressions for the SHO thermal density matrices should read

ρ(ω) =
∑

n
1−e−βω
enβω

|n〉〈n|, there is a minus sign missing in the expression for

SB, and the factors of c are missing, while all the factors of ~, kB are present.

For more on this subject see this review by Caves and Drummond or this

beautiful PRL by Yuen and Ozawa.

5. Direct application of Lieb’s theorem.

We only used a very special case of Lieb’s theorem to prove monotonicity of the

relative entropy. Surely there is more to learn from it.

Consider an ensemble of states ρ =
∑

i piρi, and a unitary operator U (for

example, it may be closed-system time evolution).
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Show that the relative entropy between ρ(t) ≡ UρU† and ρ is convex in ρ:

D(ρ(t)||ρ) ≤
∑
i

piD(ρi(t)||ρi).

In the notation we used for Lieb’s theorem, fs,X(ρ, σ) ≡ trX†ρ1−sXσs,

D(ρ(t)||ρ) = −∂s|s=0trUρ1−sU†ρs = −∂s|s=0fs,U†(ρ,ρ).

Since Lieb’s theorem says fU,s(ρ,ρ) is jointly concave, this function is jointly

convex:

D(ρ(t)||ρ) ≤
∑
i

pi
(
−∂s|s=0fs,U†(ρi,ρi)

)
=
∑
i

piD(ρi(t)||ρi)

as requested.

Open ended bonus problem: see if you can find a better result by directly applying

Lieb’s joint concavity theorem to a problem in many body physics.

6. Random singlets. [optional]

Consider qbits arranged on a chain. Suppose that the groundstate is made of

random singlets, in the following sense: for a given site i, with probability f(|i−
j|a) (a is the lattice spacing), the spins at i and j are in the state (|↑↓〉−|↓↑〉)/

√
2.

Every spin is paired with some other spin. Consider in turn the case of short-

range singlets where f(x) ∝ e−x/ξ, and long-range singlets where f(x) ∝ 1
x2+δ2

.

(a) Consider a region A which is an interval
[
−R−ε

2
, R−ε

2

]
(ε� R) and B is what

we called Ā− (nearly the complement), more precisely: B ≡ [−∞,−R
2

] ∪
[R
2
,∞]. Let Iε(R) ≡ I(A : B) = S(A) + S(B) − S(AB) be their mutual

information.

Find
〈
~Si · ~Sj

〉
(where ~S = 1

2
(σx, σy, σz)) and Iε(R). In both cases assume

the regions are big enough that you can average over regions and use a

continuum approximation (ξ, δ � lattice spacing).

Check that the answer is consistent with the mutual information bound on

correlations.

If two spins ij are paired, 〈singlet|ij ~Si · ~Sj |singlet〉ij = −3
4
. We assume

that otherwise
〈
~Si · ~Sj

〉
= 0. Therefore

〈
~Si · ~Sj

〉
= −3

4
f(|i− j|).

The mutual information is equal to 2 log 2 times the number of singlet bonds

connecting the two regions. On average, this is

I(A : B) = 2 log 2

∫
B

dy

∫
A

dxf(x− y).
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In the case of short-range singlets this gives

I(A : B)short = 4

∫ R/2

−∞
dyey/ξ

∫ R/2

−R/2
dxe−x/ξ = 8ξ2e−

R
2ξ sinh

R

2ξ
,

which approaches 4ξ2 for R� ξ.

For long range singlets, Mathematica says

I(A : B)long = 2
R

δ

(
π − 2 tan−1

(
R

δ

))
+ ln

(
1 +

R2

δ2

)
which is unbounded as R� δ.

Actually the bound we proved does not quite apply to the operator ~Si · ~Sj
because this is not of the form OAOB (rather it is a sum of three such

operators). Let’s instead check XiXi, for which

〈singlet|ij XiXj |singlet〉ij = −1, 〈XiXj〉 = −f(|i− j|), ||Xi || = 1.

Then
〈XiXj〉

2

2||X ||2
=

1

2
f(|i− j|)2.

In both cases, I is larger than f(ε), where ε is the maximum separation

between A and Ā−.

(b) Consider instead the case where B = [−∞,−R
2
−L]∪ [R

2
+L,∞], so that A

and B are separated by a distance L. Show that: for short-range singlets,

(i) all (averaged) correlation functions decay exponentially in L (ii) I(A :

B) ∼ e−L/ξ for large L (and hence the mutual information satisfies an area

law). For long-range singlets (i) (averaged) correlation functions have power

law decay (ii) I(A : B) ∼ log(2R− L) for large L, and there is no area law.

Clearly the averaged correlation functions are simply proportional to f(i−j),
which (since f is monotonically decreasing in both cases) is less than its value

at the minimum separation between A and B, namely f(L).

Now

I(A : B)short = 2ξ2e−
2L+R

2ξ sinh
R

2ξ

L�ξ∼ 4ξ2e−L/ξ,

exponential decay.

This problem is from this paper.
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