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1. Simple stabilizer codes.

(a) Consider the Hamiltonian on two qbits

−H = X1X2 + Z1Z2.

Show that the terms commute and that the groundstate is

|00〉+ |11〉√
2

.

(b) Consider the (non-local) Hamiltonian on N qbits

HGHZ = −X1 · · ·XN −
N−1∑
i=1

ZiZi+1. (1)

Show that all the terms commute. Show that the groundstate is (the GHZ

state)
|00...0〉+ |11...1〉√

2
.

(c) Show that the following circuit U produces the GHZ state from the product

state |0〉⊗N .

|0〉N · · ·

|0〉N−1 · · · •
...

|0〉3 · · ·

|0〉2 • · · ·

|0〉1 H • · · ·

(d) What state does U produce from |1〉1 ⊗ |0〉
⊗N−1?
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(e) Find the result of feeding the Hamiltonian −
∑

i Zi (whose groundstate is

the product state |0〉⊗N) through the circuit, i.e. what is

U

(
−
∑
i

Zi

)
U † ?

Hint: use the rules for the action of CX by conjugation given in lecture.

(f) The five-qubit perfect code. [optional but fun] Consider the Hamiltonian

on five qubits

H ≡ − (ZXXZ1 + cyclic permutations) . (2)

Show that XL = XXXXX and ZL = ZZZZZ are suitable logical opera-

tors. Construct the two groundstates. One way to do this is to start with

|00000〉 and act with the projector onto the code subspace. The projector

onto the code subspace is

Π =
∏
B∈S

(
1 +B

2

)
=

1

25

∏
s∈F5

2

Bs1
1 · · ·Bs5

5 (3)

where S is a set of generators the stabilizer group (terms in H), and by F5
2

I just mean strings of 5 bits. Then

|0L〉 =
1

25

∑
s1···s5=0,1

Bs1
1 · · ·Bs5

5 |00000〉 . (4)

Bonus problem: show that the groundstate wavefunctionAz1···z5 ≡ 〈z1 · · · z5|0L〉
is a perfect tensor. This means that it is maximally entangled with respect

to all possible bipartitions.

Super-bonus problem: Study the physics of the model withH = −
∑

i ZiXi+1Xi+2Zi+3

in the thermodynamic limit.

2. Algebraic condition for stabilizer code. [optional] We can represent a Hamil-

tonian on q qbits, where each term is a product of Xs and Zs, by a 2q×T matrix

σ, where T is the number of terms in the hamiltonian. (This is the transpose of

the object I wrote in lecture.) Each column represents a term in the Hamiltonian.

The top q rows indicate where the Zs are and the bottom q rows indicate where

the Xs are. Think of it as a map from the set of stabilizers (terms in H) to the

set of Pauli operators.
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For example, the matrix for the example in problem 1a is

σ1a =


0 1

0 1

1 0

1 0

 .

Convince yourself that the condition for all the terms to commute is that

σtλσ = 0 mod 2

where

λ ≡
(

0 1q×q
1q×q 0

)
.

Check that this is the case for the examples above.

For a beautiful elaboration of this machinery that incorporates translation in-

variance, see Haah’s thesis.

3. Bekenstein bound. [optional]

In this problem, ~ = c = kB = 1.

(a) A black hole has a temperature TBH = 1
8πGNM

and (in Einstein gravity) an

entropy SBH = A
4GN

, where A = 4πR2 is the area of the event horizon, and

R = 2GNM is the Schwarzchild radius. Check that this is consistent with

the first law of thermodynamics dE = TdS, where E = M .

(b) The generalized second law then says that Stotal = SBH + Sstuff is non-

decreasing. Suppose we have an object of linear size R (say it fits in a

sphere of radius R) whose energy E and entropy S satisfy S
?
> 2πER.

Then we can cram some extra stuff in there until the object undergoes

gravitational collapse and forms a black hole. Convince yourself that this

would violate the generalized second law. Thus we arrive at the Bekenstein

bound, S ≤ 2πER. Notice that GN has dropped out of this relation. Indeed

a version of it follows simply from positivity of the relative entropy (see

below).

(c) [optional bonus part which requires some general relativity] To understand

why a black hole has a temperature, notice that near the horizon at r =

2GNM , the Schwarzchild metric

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2

(
dθ2 + sin2 θdϕ2

)
, f(r) = 1− 2GNM

r
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looks like

ds2
Rindler = −κ2ρ2dt2 + dρ2 + r2

s

(
dθ2 + sin2 θdϕ2

)
(5)

where ρ = 2
√
rs(r − rs) for a constant κ, and rs ≡ 2GNM . Determine κ.

Show that regularity of this geometry in euclidean time τ ≡ it requires

periodic euclidean time τ ' τ + β(κ). Find β(κ) and interpret it as an

inverse temperature.

Moreover, show that in the coordinates T = κρ sinh η, Z = ρ cosh η (with

η ≡ κt), the near-horizon metric (5) is

ds2
Rindler = −dT 2 + dZ2 +R2

(
dθ2 + sin2 θdϕ2

)
namely R1,1 × S2. However, only the region Z > 0 describes the region

outside the horizon. This means that the system outside the horizon must

be described by a density matrix which traces out the region Z < 0.

Now recall from lecture the Bisognano-Wichmann theorem: in the ground

state of a relativistic quantum field theory, the entanglement Hamiltonian

for a half-space cut is the boost generator

K = 2π

∫
x>0

dxxT00.

That is, the reduced density matrix ρ0 = e−K/tre−K is a thermal state

with Hamiltonian K. Moreover, the Rindler rapidity η is proportional to

the asymptotic Minkowski time coordinate t. Check that the temperature

obtained this way agrees with the euclidean periodicity argument.

(d) Show that a version of the Bekenstein bound can be obtained from positivity

of the relative entropy. More precisely, consider some region of space, and

write the reduced density matrix of the vacuum state as ρ0 = e−K

tre−K . Show

that 0 ≤ D(ρ||ρ0) can be written as

S(ρ)− S(ρ0) ≤ trρK − trρ0K.

Interpret the left hand side as the entropy above the vacuum, and the RHS

as (E − E0)R where E0 is the vacuum energy.

4. LOCC versus entanglement creation. [Optional. This problem was sug-

gested to me by Tarun Grover.] A fact that has received a lot of recent attention

in the literature and in the press is that one can prepare the toric code ground-

state by starting with a product state, measuring the toric code stabilizers (the

terms in the toric code hamiltonian), and correcting any errors that occur. That
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is, if one finds that some of the stabilizers gives −1 instead of +1, this means

that there are anyon excitations; one can then group these anyons in pairs, move

them toward each other using local unitaries, and annihilate them.

The toric code groundstate is highly entangled. For example, if we divide the

plane into two halves A and B, there will be nontrivial long-range entanglement

between A and B.

On the other hand, a desideratum for any measure of entanglement between A

and B is that the entanglement does not increase under LOCC operations.

Identify which step or steps above cannot be done with LOCC between A and

B. (Suppose for definiteness that each of A and B is a fixed collection of links of

the lattice on which the toric code is defined.)
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